# EE367 Project: Implementation of the weighted nuclear norm minimization for image denoising Andrei Kanavalau

| <ul> <li>Motivation</li> <li>Image denoising is an important part of the image processing pipeline</li> <li>Foundational to other tools</li> <li>Gain insight by implementing a state of the art technique based on weighted nuclear norm minimization (WNNM)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                     | <text></text>           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| <ul> <li>Related Work</li> <li>Numerous techniques available<br/>from simple Gaussian and<br/>median filters to denoising<br/>convolutional neural networks<br/>(DnCNN)</li> <li>Non-local approaches have<br/>superior performance [1],<br/>especially Block matching and<br/>3D filtering (BM3D) [2], WNNM<br/>[3], and DnCNN</li> </ul>                                                                                                                                                                                                                                                                                                                                   | • Com                   |
| <b>References</b><br>[1] L. Fan, F. Zhang, H. Fan, and C. Zhang. Brief review of image denoising<br>techniques. Visual Computing for Industry, Biomedicine, and Art, 2(1):7, 2019.<br>[2] K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, "Image Denoising by Sparse 3-D<br>Transform-Domain Collaborative Filtering," in IEEE Transactions on Image<br>Processing, vol. 16, no. 8, pp. 2080-2095, Aug. 2007, doi: 10.1109/TIP.2007.901238.<br>[3] S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with<br>application to image denoising. In Proceedings of the IEEE Conference on Computer<br>Vision and Pattern Recognition (CVPR), June 2014. | • Avera<br>PSNR<br>SSIM |

Department of Electrical Engineering, Stanford University

## Method

NM denoising relies of the assumption that the structure in the image can be identified ong the noise using a matrix low rank approximation



### **Experimental Results**

npare to other denoising techniques



20.30 0.39

28.70 0.83

rages across 15 grayscale images:

| - | 20.22 | 26.36 |
|---|-------|-------|
| - | 0.49  | 0.80  |

### NLM Bilateral WNNM 31.72 28.41 29.49 0.81 0.88 0.93 26.60 26.97 28.40 0.86 0.80 0.82