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SIREN Formulation 

• Goal: Explore the extent to which neural implicit 
representation of images can be used for denoising.

• Motivation: Implicit functions parameterized by neural 
networks have shown promising results in fitting image 
signals. We want to explore the capacity in which this 
representation can help image denoising.

• Previous work: SIREN, DnCNN, BM3D
• SIREN is a type of neural implicit function that uses periodic 

activation functions. This is the primary model we study.
• DnCNN is a data-driven denoiser using CNN. 
• BM3D is the state-of-the-art non-data-driven denoiser.
• Our work: We use a non-data-driven approach and do not 

assume access to an external dataset of natural images. We 
use SIREN to 1) directly fit a noisy image, 2) fit a noisy image 
with TV regularization, 3) fit a noisy with TV and spline 
positional encoding.

We are given a corrupted image !𝐼 from 𝐼 + 𝜖, where 𝐼 is the clean image. For simplicity, we assume !𝐼 is defined 
on the grid −1, 1 ! but we only observe a discrete set of values !𝐼(𝐺), where 𝐺 is a set of evenly sampled points.

1. Fitting SIREN directly to noisy image:

2. Fitting SIREN to noisy image with total variation (TV) regularization:

3. Fitting SIREN to spline coordinate encoded grid:

We evaluate the results quantitatively with PSNR (higher better) and LPIPS (lower better) to the clean image. 
Compared to PSNR, LPIPS focuses more on evaluating how perceptually similar two images are.

Continuous Bilateral Filtering

Because we have learned a continuous functional representation Φ of an 
image, we can apply a continuous analog of bilateral filtering on Φ. 
Specifically, we randomly perturb the input grid 𝐺 for 𝑘 times, and for each 
perturbed -𝐺", we Φ and weight the result Φ( .𝐺") by a location weight 
𝑊#(𝐺, .𝐺") and intensity weight 𝑊$ Φ(𝐺),Φ( .𝐺") . The filtered result is 
thus ∑"%&' (𝑊#1 𝑊$)Φ( .𝐺"). We apply this on the fidelity model’s result and 
include it in the comparisons.

SPE Formulation

We also experiment with modifying a SIREN network with 
an additional spline positional encoder (SPE) to its input 
coordinate grid 𝒙. For each 2D coordinate, We first select 𝑚
random unit directions, and project each 2D coordinate 𝑥
to a 1D point 𝑥" ≔ 𝑥,𝐷" for 𝑚 times. Then the SPE of 𝑥 is:

SIREN Training Has Two Phases

During training, we plot `LPIPS_clean` (LPIPS compared to 
clean image) and `LPIPS_noisy` (LPIPS compared to noisy 
image). We observe that while `LPIPS_noisy` keeps 
decreasing, `LPIPS_clean` would eventually increase, which is 
the phase where SIREN is overfitting to noise. This is not 
observed when training with SPE, although SPE is much 
slower to converge (2400 steps instead of 1200 steps).

Each 𝜙" is a layer of neural network comprised with a sine 
activation function. The input 𝑥 is a grid of 2D coordinates 
(because we are fitting images), and the output Φ(𝒙) is a 
grid of 3D values representing the RGB channels. 

Note that Φ(𝒙) is now a continuous and differentiable 
representation of the input image, which we can optimize 
for fitting the noisy image directly or further regularize the 
gradient of Φ(𝒙) to minimize total variation (TV).

Each 𝜓" is a parametric spline function. We simply 
transform the input coordinate 𝒙 by 𝑆 𝒙 and then pass it 
as input coordinate to SIREN, Φ(𝑆(𝒙)).

SPE is a Form of Regularization

Here we compare the LPIPS and PSNR curves of SIREN 
trained under these three conditions. We observe that SPE 
implicitly acts as a kind of regularization that prevents both 
LPIPS and PSNR to clean from getting too bad. But in the 
best-case early-stopping, SIREN with just the data fidelity loss 
still achieves the best metric. However, we like to note the 
best metric does not always reflect most pleasing visual 
results (even in the case of LPIPS).

Correction: x-axis should be 
from 0 to 1200, not 0 to 2400

Early-Stopped Denoising Results

Comparison with Baselines

We show results of 3 baseline methods. In addition to 
BM3D and DnCNN, Deep Image Prior (DIP) is an early-
stopped CNN trained to fit a single image.

Note on metric: we found that neither PSNR nor LPIPS truthfully reflect 
human preference. For example, while DIP achieves highest LPIPS, we feel 
that DnCNN produces a more visually appealing image. 

*It is important to note that DnCNN
is the only data-driven method, so it 
has access to more information and 
trains for much longer.


