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Introduction

Related Work and Motivation

Simulation Results
• X-ray Photon Fluctuation Spectroscopy is a single photon counting 

technique used to study ultrafast materials dynamics. 
• It is a statistical technique which requires tens of thousands of frames 

to derive any useful physics.
• To obtain the relevant physics, the experimental data must be 

denoised and deconvolved to obtain a discrete image which counts 
the number of incident photons per pixel.
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Future Work 
• Combine different bin sizes for photon conservation constraint
• Add a photon conservation constraint on input space (raw image) in addition to prediction space (discrete photon 

maps)
• Test generalization of simulation trained DnCNN and U-net on experimental data from LCLS 

• Prior methods such as Greedy Guess [2,3] and Greedy Guess - Least 
Squares [2,3] have been developed for this task, however they are 
very slow compared to the acquisition speed at LCLS. In addition, 
these methods often struggle with higher SNR data.

• In this poster, we attempt to analyze XPFS data using convolutional 
neural networks on data from an accurate experimental simulator [1]. 
The motivation for this approach is that a supervised pipeline could be 
faster and more accurate than conventional approaches. 

New Techniques
1. Background Denoising with a DnCNN [5]

Noisy Image Residual Image

2. U-net [6] + photon conserving loss function penalty  

DnCNN
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Photon 
ADU

MAE Ratio: 
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340 3.23x
170 3.49x
113 5.21x

1. Background Denoising with a DnCNN

2. U-net + photon conserving loss function penalty  

Takeaway 1: CNN denoising strongly outperforms denoising based on any manual threshold 

Takeaway 2: Performance is even more noticeable as the SNR ratio of the data changes – i.e. DnCNN performs better on 
low signal data. 

Method Macro F1 Score 

U-Net 0.67
U-Net + Sample weighting (inverse class prevalence) 0.40

U-Net + 50% SMOTE data 0.67
U-Net + Focal Loss Function [4] 0.46

U-Net + Photon Conserving Loss Penalty (3x) 0.68
U-Net + Photon Conserving Loss Penalty (2x) 0.69

Takeaway 1:Photon Conserving Loss Penalty appears to be helping the sparse prediction issue

CrossEntropy[true, pred] + MSE[sumPool(true), sumPool(pred)]

Standard U-net classification loss Photon Conserving Term
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