Survey of Disparity Map Algorithms Intended for Real Time Stereoscopic Depth Estimation
Erick Blankenberg and Scott Blankenberg

Motivation

Motivation for Investigating Stereo Depth Estimation
- Cost effective depth estimation is critical for economical autonomous vehicles
- LIDAR is expensive, uses active sensing, and produces sparse measurements which are augmented with video streams for object identification
- Stereo imaging systems in conjunction with cheap LIDAR is significantly less expensive, passive, and produce dense depth estimates but require a computationally expensive disparity estimation step

State of the Art Disparity Algorithms
- Traditional disparity estimation algorithms use area or feature based comparisons to find matching pixels and require significant sacrifices to achieve real-time speed such as local and sparse approaches
- Recent efforts from Uber Research and others in convolutional neural networks and differentiable structures bring unprecedented accuracy and real-time evaluation on CUDA enabled hardware. In our work we evaluate two such algorithms alongside a traditional disparity estimation algorithm.

Related Work

Surveys
- Several exist for traditional algorithms.

Middlebury Database
- Databases of indoor scenes of increasing complexity
- API for testing and published list of ranked algorithms
- Benchmark used in several papers for comparison.

KITTI Vision Benchmark Suite
- Databases of outdoor scenes for scene-flow, stereo disparity, odometry, and object tracking.

Dataset

Middlebury Dataset 2001:
- 9 Images
- All are synthetic images made from intersecting textured planes.

Middlebury Dataset 2014:
- 25 Images
- Each is a complex indoor scene made from compositions of household objects.

Methods

Block Matching (Baseline method)
- Relatively simple and fast window based local matching method
- Scans epipolar line and uses Winner Take All principle
- Does not consider global context
 - Fails at discontinuities and plain regions
 - Susceptible to noise

Deep Pruner
- Uses differentiable adaptation of PatchMatch algorithm to create a sparse representation of cost volume
- Leans which range to prune for every pixel
- Uses an image guided refinement module to improve performance

Pyramid Stereo Matching Network (PSMNet)
- Spatial pyramid pooling module for incorporating global image context
- 3D convolutional neural network

Experimental Results

Adirondack Sample Evaluation Comparison

Average Absolute Difference Performance

Conclusions

Quantitative
- Performance is good across the board on the 2001 dataset but complex scenes in the 2014 dataset are challenging
- State of the art deep-learning models are superior to the Stereo Block Matching algorithm provided in OpenCV.
- Runtimes are high but were run on a CPU (2.9 GHz Intel Core i5 in a 2015 Macbook)

Qualitative
- Deep-learning models tend to overpaint low disparity values on near objects over high disparity objects in the foreground creating a "halo" when the absolute difference is plotted. PSMNet does this more than DeepPruner.
- DeepPruner captures smooth gradients, PSMNet creates steps of flat patches over gradient sections.
- StereoBM generates flat estimates on gradients in all but a few 2001 images and oftentimes fails to produce an estimate (gives 0) for complex regions leading to high error.

Future Work

Database Scope:
- Extend survey to outdoor scenes from the KITTI database and use included occlusion maps.
- Include moderately complex 2006 Middlebury set.
- Include custom images.

More Algorithms
- Finish fuzzy logic disparity algorithm.
- Implement best scoring algorithm not based on deep-learning methods intended for real-time application from KITTI and Middlebury records.
- Implement deep-learning algorithms on GPUs to achieve speed comparable to claims of authors.

References