Extracting the Depth and All-In-Focus Image from a Focal Stack
Shane Barratt and Benjamin Hannel
Stanford University
{sbarratt, bhannel}@stanford.edu

Abstract
● The captured image changes with focus distance.
● We can infer depth from images of a scene at focused at different distances.
● We model image formation, and optimize for the true scene that could have caused our captured images.

Data Capture
● We used Open Camera on a Samsung Galaxy S8 Active to capture focal stacks.
● We empirically determined the magnification and PSF radius.

Method
Start with a guess of the all-in-focus image and the depth map

Simulate image formation to render the image at each depth

Compare with observed images at each depth and update our guess

Results Against Baseline

<table>
<thead>
<tr>
<th></th>
<th>Depth RMSE (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our method</td>
<td>4.26</td>
</tr>
<tr>
<td>Maximum Gradient</td>
<td>10.20</td>
</tr>
</tbody>
</table>

Output of maximum gradient depth reconstruction

Image Formation
● We model the depth of each pixel as a probability distribution.
● We simulate image formation as a weighted sum of the simulated image at each depth.
\[
(I_i)_{xy} = \sum_{j=1}^{N} P_{wj} I_{we} \mathbb{I} \left(||(u,v) - (x,y)||_2 \leq C_i(d_j) \right)
\]

Inverse Problem

minimize \[L(I, P) + \lambda_1 r_I(I) + \lambda_2 r_P(P) \]
\[
L(I, P) = \sum_{i=1}^{N} \ell(\hat{I}_i, I_i)
\]
\[
\ell(\hat{I}_i, I_i) = ||\hat{I}_i - I_i||_2
\]
\[
r_I(I) = |\nabla_x I|_1 + |\nabla_y I|_1
\]
\[
r_P(P) = |\nabla_x P|_1 + |\nabla_y P|_1
\]

Our loss function has 3 terms:
● \(L \) is total reconstruction loss
● \(\ell \) is partial reconstruction loss
● \(I_i \) is the ith captured image
● \(\hat{I}_i \) is the ith synthesized image
● \(r_I \) is the image TV prior
● \(r_P \) is the depth TV prior