
Optical Illusion Puppet Generator

Vivian Yang
Department of Electrical Engineering, Stanford University

350 Serra Mall, Stanford, CA
viviany@stanford.edu

Abstract

We have designed a system that can automatically gener-
ate a real optical illusion puppet from any input individual
frontal-view face photo. The basic function of the system
is to capture the human face from the given photo and cor-
rectly transform it onto a fixed template. The final product is
a 2-D layout that can be printed out for further assembling.

1. Introduction

Art is inherently visual. With the advances of compu-
tational imaging, one is able to explore the possibilities of
allowing the public to interact with art in ways that would
be otherwise impossible. For example, an engineered t-rex
paper craft, as shown in Figure 1, can produce an optical
illusion which makes the observer feels that the t-rex is al-
ways looking at him or her, as shown in Figure 2. Inspired
by this optical illusion t-rex puppet, our project aims to de-
sign a system that can crop human faces from photos and
map it on a template that can create an optical illusion ef-
fect which lets the image seem to turn its head and follow
you as you move.

Figure 1: Printout of the t-rex template.

To achieve this goal, we proposed to design a system
that can let the user input an individual frontal-view face
photo, then auto customize a human-face optical illusion
product, which seems to turn its head and follow you as you
move. The pipeline of our method is: 1) capture human
faces from photos; 2) apply affine transformation to modify
the size and the position of the face; 3) correct the color of
the human face to match the template; 4) merge the face and
the skull template together.

2. Related work

2.1. Facial landmark detection

Facial landmark detection under generic settings is al-
ways an extremely challenging problem that gets com-
pounded in presence of external factors such as illumina-
tion changes, pose variation and occlusion. Over the past
20 years, great amount of techniques have been proposed
for computer landmark detection of human faces, such as
CLM [1] and Dlib facial landmark detection [5]. Open-
Face [2] can even do head pose tracking, eye gaze and fa-
cial Action Unit estimation. Also, these are all open source
framework which can be implement in this project.

Figure 2: Example of an optical illusion t-rex.



2.2. Perspective transformation

There are a lot of transformation method being devel-
oped over years. For instance, the 3-point affine trans-
formation, 4-point perspective transformation function in
OpenCV [3] and the eight-point algorithm. There is even
a more advanced image-based, facial reenactment system
that replaces the face of an actor in an existing target video
with the face of a user from a source video, while preserving
the original target performance in [4].

3. Implementation
3.1. Environment Setting

To fulfill our design, we mainly need to use two kinds of
library, which are described as follows.

3.1.1 OpenCV

OpenCV [3] is an open source computer vision and machine
learning software library which has been widely utilized to
provide a common infrastructure for computer vision appli-
cations.

3.1.2 Dlib

Dlib [5] is a modern C++ toolkit containing machine learn-
ing algorithms and tools for creating complex software in
C++ to solve real world problems.

3.2. Hollow-Face illusion

The Hollow-Face illusion is an optical illusion in which
the perception of a concave mask of a face appears as a
normal convex face. The trick inside this illusion is that
a hollow face can appear to move its eyes faster than the
viewer: looking forward when the viewer is directly ahead,
but looking at an extreme angle when the viewer is only at
a moderate angle. According to this characteristic, it will
create an illusion that the puppet’s head seems to follow the
viewer’s eyes everywhere (even up or down), when lighting,
perspective and/or stereoscopic cues are not strong enough
to tell its face is actually hollow.

There are a lot of optical illusion puppet templates on-
line. The reason why we choose the skull template for our
project is because there are more similarities between skull
and human face. Therefore, the human face do not need to
distort a lot to fit into the template.

3.3. Landmark detection

The system must be able to find the location of different
facial features (e.g. centers of the eyes, nose, mouth), so
that it can accurately crop the human face from the photo
and put it on the template in correct size and position.

(a) (b)

Figure 3: (a) The chosen template. (b) The mask of the
chosen template.

Therefore, we choose to use Dlib, which will detect 68
landmarks of the human face, as shown in Figure 5, because
the algorithm it have chosen to implement is very fast and
accurate. The detection function in dlib is as follow:

// We need a face detector. We will use this to get
bounding boxes for each face in an image.
frontal face detector detector = get frontal face detector()
// And we also need a shape predictor. This is the tool that
will predict face landmark positions given an image and
face bounding box.
shape predictor sp
deserialize(argv[1]) >> sp
det = detector(img)
full object detection shape = sp(img, det)

After applying the function, the detection result will
be like Figure 5.

Figure 4: The positions
of 68 landmarks. Figure 5: Actual facial

landmark detection.

3.4. Affine transformation

Basically there are two different transform functions in
OpenCv [3]:

getAffineTransform(src points, dst points),

which calculates an affine transform from three pairs of the
corresponding points, and

getPerspectiveTransform (src points, dst points),



which calculates a perspective transform from four pairs of
the corresponding points. Since there are three main fea-
tures on both human and skull’s face, which is right eye, left
eye and mouth, we choose to use the first transform function
getAffineTransform.

A typical way to represent an Affine Transform is by us-
ing a 2× 3 matrix:

A =

[
a00 a01
a10 a11

]
2×2

B =

[
b00
b10

]
2×1

M =
[
A B

]
=

[
a00 a01 b00
a10 a11 b10

]
2×3

Considering that we want to transform a 2D vector X =[
x
y

]
by using A and B, we can do it equivalently with:

T = A ·
[
x
y

]
+B

or
T = M · [x, y, 1]T

T =

[
a00x+ a01y + b00
a10x+ a11y + b10

]
Since we know both X and T’s three points and we also

know that they are related, our job is to find M. This is what
the getAffineTransform do. Then we can apply this found
relation to the whole pixels in the image, by using the fol-
lowing code:

warpAffine(mat X, mat T, mat M, mat T.size()).

Figure 6: 3-point affine transformation.

After using the function, the photo will be resized and
moved to let the face correctly fit perfectly into a specific
frame.

3.5. Color correction

Differences in skin-tone and lighting between the two
images will cause a discontinuity around the edges of the
overlaid region. Therefore, we need to correct the color of
the warped human face image, using the following function:

correct color(template img, skull img){
GaussianBlur(face img, kernel size, standard deviation)
GaussianBlur(skull img, kernel size, standard deviation)
return (face img .* skull img blur ./ face img blur)
}

This function is to change the coloring of human face
image to match that of the template image. The idea is that
of a RGB scaling color-correction, but instead of a constant
scale factor across all of the image, each pixel has its own
localized scale factor.

Figure 7: Color correcting the facial image.

3.6. Seamless Cloning

In this part, we are going to blur the mask and use this
blurred mask to select which parts of the face image and
which parts of the template image should be shown in the
final image. In the blurred mask, regions with value 1 (col-
ored as white) correspond with areas where the face image
should show, and regions with colour 0 (colored as black)
correspond with areas where the template image should
show. Value in between 0 and 1 correspond with a mix-
ture of the face image and the template image. The result
will be like the image being shown in Figure 8

4. Experimental results

To evaluate the performance of the proposed optical il-
lusion puppet generator, we printed out the image we gen-
erated, as shown in Figure 9, and assembled it. From the



Figure 8: Merge the morph facial image onto the template.

Figure 10 we can see that, comparing to the t-rex and iron-
man puppet, although our puppet does not perform as well
as the t-rex puppet, it outperforms the ironman puppet, be-
cause our puppet has more details.

Figure 9: Output result.

(a) (b)

Figure 10: (a) Look from left-hand side. (b) Look from
right-hand side.

5. Discussion

From the experiment above we can see that this system
only works for single person, frontal-view face photo. Also,
in the affine transformation we only use three point to trans-
form the face image, which is less accurate than the eight-
point algorithm. Therefore, to better the system, we can try
to implement the eight-point algorithm in the affine trans-
formation part. Furthermore, we can try to let the system

Figure 11: The back of the puppet.

can generate puppets from a photo with a group of people
at once.

6. Conclusion
In this project, we have proposed a system that can gen-

erate a real optical illusion product from a photo. To fulfill
this goal, we need to detect the landmarks of the input photo
first. Then, we have to geometrically transform it into the
right size, right position. Next, we modify the face to let its
skin color be more similar to the color of the skull. Last,
we paste the color corrected face on the skull template that
tricks our brains to interpret faces as convex. From the re-
sult we can see that the final product is quite delicate. There-
fore, the performance of our generator is still competitive.

References
[1] T. Baltrušaitis, P. Robinson, and L.-P. Morency. 3d con-

strained local model for rigid and non-rigid facial tracking.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2012.

[2] T. Baltrušaitis, P. Robinson, and L.-P. Morency. Openface:
an open source facial behavior analysis toolkit. IEEE Winter
Conference on Applications of Computer Vision, 2016.

[3] G. Bradski. Dr. Dobb’s Journal of Software Tools, 2000.
[4] P. Garrido, L. Valgaerts, O. Rehmsen, T. Thormäehlen,

P. Perez, and C. Theobalt. Automatic face reenactment.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4217–4224, 2014.

[5] D. E. King. Dlib-ml: A machine learning toolkit. Journal of
Machine Learning Research, 10:1755–1758, 2009.


