
Investigating Image Inpainting via the Alternating DirectionMethod of
Multipliers

Jonathan Tuck
Stanford University

jonathantuck@stanford.edu

Abstract

In many imaging applications, there exists poten-
tial for corruption of the images by sources of struc-
tured noise that completely loses original pixel infor-
mation. The reconstruction of the original image from
its corrupted observation is known as image inpaint-
ing. This paper seeks to investigate image inpaint-
ing using a particular algorithm, the alternating di-
rection method of multipliers (ADMM), and analyzes
ADMM’s performance in image inpainting. Due to the
ill-posedness of image inpainting, four priors were in-
vestigated in the ADMM implementation: total varia-
tion, non-localmeans, BM3D, and the recursive Gaus-
sian filter. For each prior investigated, this paper uses
an open-source ADMM solver and compares two per-
formance metrics, the PSNR and SSIM, for a variety of
images and corruption models.

1. Introduction

In many imaging applications, there exists poten-
tial for corruption of the images by sources of struc-
tured noise that completely loses original pixel in-
formation. It is important to be able to reconstruct
the image as accurately as possible, to be able to
convey the original image information. This process
of reconstructing images that have large portions of
their image completely lost, known as image inpaint-
ing, allows for the estimation and restoration of those
missing pixels. A simple example of image inpainting
can be seen in Figure 1 [1]. As can be seen in Figure
1, the inpainting processmay leave someartifacts be-
hind and is not usually perfect; in fact, the accuracy
of the inpainting is typically related to one’s choice
of prior (i.e., a total variation prior will typically work
better on an image with sparse gradients than on an
image without sparse gradients.)

Figure 1. Two images of three children, one with image-
degrading creases (left) and its inpainted counterpart
(right.) Note the artifacts along the horizontal of themiddle
child’s eyes, where inpainting occurred.

2. RelatedWork
2.1. ADMM

Recent work has been done in the field of efficient
algorithms, and the alternating direction method
of multipliers (ADMM) has been one of the more
widespread algorithms used in the past few years [2].
In particular, ADMM solves the following optimiza-
tion problem:

minimize
x

f (x)+ g (z)

subject to Ax+Bz = c
(1)

where f and g are convex functions. The optimiza-
tion problem is solved by forming the augmented la-
grangian of the system,

Lρ(x,z,y) = f (x)+g (z)+yT (Ax+Bz−c)+ ρ

2
‖Ax+Bz−c‖2

2,

(2)
where y is the dual variable of the problem, and
performing the update procedure described in Algo-
rithm 1 continuously until convergence. Here, prox()
denotes the proximal operator [9]. As an aside, it is
also common to replace y with the scaled dual vari-
able u = (1/ρ)y and perform ADMM with u being the
update parameter.

Data: Functions f , g ; Matrices A,B; Vector c;
convergence tolerance ε

Result: Optimal value x
while ‖Residual‖2 = ‖Axk +Bzk −c‖2 > ε do

xk+1 := argmin
x

Lρ(x,zk ,yk)

= prox
f ,ρ

(zk − (1/ρ)yk)

= prox
f ,ρ

(v)

zk+1 := argmin
z

Lρ(xk+1,z,yk)

= prox
g ,ρ

(Axk+1 + (1/ρ)yk)

= prox
g ,ρ

(v)

yk+1 := yk +ρ(Axk+1 +Bzk+1 −c).

end
Algorithm 1: ADMM algorithm.

One main benefit of ADMM is that convergence is
guaranteed given that f and g are convex and L0 (the
normal lagrangian, or theaugmented lagrangianwith
ρ = 0) has a saddle point. Another important benefit
of ADMM is that because the algorithm requires little
assumptions on the problem, ADMM naturally finds
many applications in various spaces, such as in imag-
ing and in deconvolution [13]. This lack of needed
assumptions on the problem suggests that similar,
or even the same, framework can be used for many
seemingly unrelated problems. In addition, in an at-
tempt to spread itswideuses, ADMMhasbeen imple-
mented in an open-source solver that produces rela-
tively high-quality results [5].
ADMM has been used as a solution guarantee-

ing fixed-point convergence for many denoising al-
gorithms. This past work suggests that using ADMM
in an image inpainting framework would yield an ac-
curate solution to the image restoration problem for
many classes of images (e.g., for images with sparse
gradients.)

3. Methodology
3.1. Problem Formulation

In order to use ADMM as the algorithm to imple-
ment image inpainting, it is first required to formu-
late the image inpainting problemas an optimization
problem in the form that ADMM solves.
Suppose there exists an uncorrputed image x ∈Rn ,

where n is the number of pixels in the image. In the
image inpainting scenario, we observe the corrupted

image y = Kx, where K ∈ Rn×n is a diagonal mask-
ing matrix. That is, Ki i = 1 if the i th pixel in x is ob-
served, and is equal to 0 otherwise. In addition, as-
sume that we make some prior assumption on x that
is contained in the prior function Γ. Thus, the image
inpainting problem can be formulated as:

minimize
x

‖Kx−b‖2
2 +λΓ(z)

subject to x−z = 0,
(3)

where z ∈ Rn . Here, Problem (3) is equivalent to
Problem (1) if we take f (x) = ‖Kx−b‖2

2, g (z) = Γ(z), A = I,
B = −I, and c = 0. Also note that the prior function Γ

can be thought of as a regularizer, and that the con-
straint that x−z = 0 implies that Γ is in fact a regular-
izer on x. The constant λ can be thought of as a trade-
off parameter: picking larger values for λwill give the
regularization more relative weight in the minimiza-
tion, but will thus give less relative weight to the idea
that ‖Kx−b‖2

2 should be small.
We can also derive an algorithm for ADMM like in

Algorithm 1. We first note that for this problem, the
augmented lagrangian can be expressed as

Lρ(x,z,y) = ‖Kx−b‖2
2 +Γ(z)+yT (x−z)+ ρ

2
‖x−z‖2

2.

(4)
Then, the x-update can be written as

xk+1 = argmin
x

Lρ(x,zk,yk)

= prox
f ,ρ

(v), v = zk − (1/ρ)yk

= argmin
x

1

2
‖Kx−b‖2

2 +
ρ

2
‖x−z‖2

2

= (KT K+ρI)−1(KT b+ρv).

(5)

The z-update canbederived, but requires theprior
Γ. In particular,

zk+1 = prox
Γ,ρ

(v)

= argmin
z

Lρ(xk+1,z,yk)

= argmin
z

λΓ(z)+ ρ

2
‖v−z‖2

2, v = x+ (1/ρ)y

(6)

The y-update is trivial, and is expressed as

yk+1 = yk +ρ(xk+1 −zk+1). (7)

It is important tonote that for the image inpainting
scenario, the prior only affects the z-update step.

3.2. Implementation

ADMM was implemented using the "Plug and
Play" ADMM package for MATLAB [5]. This open-
source implementation of ADMM is advantageous
because it allowsone to simply implement a relatively
fast ADMM algorithm for a wide variety of purposes
without requiring one to derive the update steps for
each situation.

3.3. Priors

For this paper, four particular priors are investi-
gated: the total variation (TV) prior, the non-local
means (NLM) prior, the Block Matching and 3D Fil-
tering (BM3D) prior, and the recursive Gaussian filter
(RF) prior. These priors were chosen for their storied
usefulness throughout imageprocessing, particularly
in denoising [3] [4] [6] [7] [10].

3.3.1 TV Prior

Explicitly, the TV prior is written as follows:

Γ(z) =λ‖Dz‖1, (8)

where D = [DT
x DT

y] is the finite difference matrix for
the horizontal and vertical image gradients [13]. In
addition, the z-update for image inpainting using
ADMMwith a TV-prior is

zk+1 := prox
Γ,ρ

(v)

= Sλ/ρ(v)

=


v−λ/ρ v >λ/ρ

0 |v| ≤λ/ρ

v+λ/ρ v <λ/ρ

,

(9)

where the function Sλ/ρ , also known as the soft-
thresholding function, is applied element-wise [12].
Intuitively, the TV prior is used when one knows

that the image being inpainted has sparse gradients.

3.3.2 NLMPrior

The NLM prior is a self similarity prior: that is, the
NLM prior is used when one knows that the image
being inpainted has subsections that look similar to
other parts of the image. Unlike the TV prior, the
NLM prior is implemented using an algorithm [4].
Given a corrupted image v = {v(i)|i ∈ I }, the NLM al-
gorithm, Algorithm 2 yields a weighted average Γ(i).
The notation v(Ni) and v(N j) denotes the pixels in
neighborhoods i and j , respectively; ‖ · ‖2,a denotes
theweighted Gaussian normwith standard deviation

a; and h is a constant picked to alter the degree of fil-
tering [4].

Data: Noisy image v ∈Rn , Gaussian standard
deviation a ∈R, degree of filtering h ∈R

Result: Denoised image Γ
for Each pixel index i ∈ {1, . . . ,n} do

Z (i) =∑
j

exp
‖v(Ni)− v(N j)‖2

2,a

h2

w(i , j) = 1

Z (i)
exp

‖v(Ni)− v(N j)‖2
2,a

h2

Γ(i) = ∑
j∈I

w(i , j)v(j)

end
Algorithm 2:NLM algorithm.

We can call theNLMalgorithm like a function [12],
and thus can put it in place of the z-update:

zk+1 := prox
Γ,ρ

(v)

= NLM(v,λ,ρ).
(10)

3.3.3 BM3D Prior

Like theNLMprior, the BM3Dprior is a self similarity
prior. The assumption made when one uses a BM3D
prior is that the 3D linear transformationof the image
to be inpainted has a locally sparse structure. Also,
like NLM, BM3D is implemented using an algorithm.
The general steps in the algorithm can be summa-
rized below [8]:

Data: Noisy image X , side length N
Result: Denoised image X̂
for Each patch of side length N do

Find all similar patches in image and group
them into a 3D block.

end
for each 3D block do

Take the 3D linear transform of the block.
Denoise the 3D linear transform of the block
via hard thresholding.
Take the inverse 3D linear transform of the
denoised block transform.

end
Aggregate all of the blocks into the final
denoised image.

Algorithm 3: BM3D algorithm.

Again, like in the NLM case, we can call the BM3D

algorithm like a function, and thus can put it in place
of the z-update:

zk+1 := prox
Γ,ρ

(v)

= BM3D(v,λ,ρ).
(11)

3.3.4 RF Prior

The recursive filter is a filter that essentially takes an
image X (t), transforms it into a new domain, filters
that newly-transformed signal with a Gaussian filter,
and inverts the transformation. In particular, the al-
gorithm used to implement a recursive filter on an
image X (t) over each of its c channels can be summa-
rized in Algorithm 4 [7].

Data: Noisy image X
Result: Denoised image X̂
for each channel i ∈ {1, . . . ,c} do

1. Compute transform

T (u) =
∫ u

0

(
1+ σs

σr

c∑
k=1

∣∣∣∣d Xk

d t

∣∣∣∣
)

d t ,

where σs and σr are the standard deviations
of the space and range of the image domain,
respectively.

2. Transform X (t) into X (T (u)).

3. Filter X (T (u)) by a Gaussian filterG(u) and
invert back into original domain to obtain
recursive filter estimate X̂ (t). That is,

X̂ (t) = T −1 {X (T (u))G(u)} .

end
Algorithm 4: RF algorithm.

Like in the NLM and BM3D cases, we can call the
RF algorithm like a function, and thus can put it in
place of the z-update:

zk+1 := prox
Γ,ρ

(v)

= RF(v,λ,ρ).
(12)

3.4. Test Images

In this paper, three test images are compared, each
containing an important structure to test. The first
picture tested is a picture of the Stanford logo, which
contains sparse gradients and self-similarity. The

second picture tested is a picture of artwork, which
contains sparse gradients. The third picture tested is
a picture of two basketball players, which contains
a locally sparse transform. The three clean (uncor-
rupted) images can be seen below.

Figure 2. The three test images for the project.

3.5. Corruption Patterns

As image inpainting fundamentally seeks to re-
store images after corruption, it is imperative to test a
variety of images with a particular pattern of corrup-
tion.
In particular, this project looks at four types of cor-

ruptionmasks: a randomGaussianmask, a barmask,
a small square, and a large square. These masks re-
move parts of the image in a structured manner (for
reference, the black pixels denotemasked pixels, and
the white pixels denote uncorrupted pixels.) All four
masks can be seen below.

Figure 3. The four masks used in modeling the image in-
painting scenario. The black colored pixels denote pixels
that are removed from the original image.

All four of thesemasks have a basis in real-life cor-
ruption. The random mask models a noisy corrup-
tion that completely eliminates somepixels of the im-
age. The bar mask models a corruption due to some
real-world deformation of an image, much like the
corruption seen in Figure 1. The squaremasksmodel
complete data loss in chunks of one area of an image,
but the varying square areas determine howmuch of
the corruption can be inpainted.

3.6. Comparison Metrics

The two metrics that we use to quantitatively de-
termine the performance of each prior in the im-
age inpainting scenario include the peak signal-to-

noise ratio (PSNR) and the structural similarity index
(SSIM) [11].

3.6.1 PSNR

The PSNR is one of themore traditional ways tomea-
sure image quality. The PSNR measures the strength
of a signal compared to its noise, and is typicallymea-
sured in decibels. For the purposes of this paper, the
PSNRbetween an image Y ∈Rm×n and its clean coun-
terpart X ∈Rm×n is calculated as shown:

PSNR = 10log10

(
max2(X)

MSE

)
(13)

where the MSE (mean-square error) is:

MSE = 1

mn

m∑
i=1

n∑
j=1

[X (i , j)−Y (i , j)]2. (14)

3.6.2 SSIM

Over the past decade, the SSIM has been used
throughout image processing to quantify the similar-
ity between two images [11]. The SSIM for two im-
ages, X and Y , can be explicitly calculated as:

SSIM(X ,Y) = (2µXµY +C1)(2σX Y +C2)

(µ2
X +µ2

Y +C1)(σ2
X +σ2

Y +C2)
, (15)

whereµX is the average of X , µY is the average of Y ,
σX is the variance of X , σY is the variance of Y , σX Y is
the covariance of X and Y , and C1,C2 are normaliza-
tion constants.

4. Results and Discussion
4.1. Resulting Images

Appendix A includes all images before corruption,
after corruption, and after inpainting. The analysis
of these images can be seen in the following subsec-
tions.

4.2. PSNR and SSIM Comparisons

Tables 3 through 10 from Appendix B include the
PSNR and SSIM values for each of the resulting im-
ages after running ADMMwith the respective prior.
It is not necessarily wise to quantitatively compare

howwell each prior performed for a given image over
the four corruption masks, as each mask corrupts a
different number of pixels and in different ways (e.g.,
randomly vs. in a square). Fundamentally, this will

lead to widely differing PSNRs and SSIMs for a par-
ticular imageover the corruptionmasks. Of larger im-
portance, then, is comparinghowwell eachprior per-
formed for a given mask over all of the test images.

In this regard, there are many insights to be found
from looking at the tables in Appendix B. Looking at
PSNR values, for the random mask, the BM3D prior
performed the best over all three images. For the bar
mask, the TV prior performed the best for the basket-
ball player image, the NLM prior performed best for
both the artwork image and Stanford logo image. For
the larger square mask, the TV prior performed the
best for the basketball player image, and the RF prior
performed the best for both the artwork image and
the Stanford logo image. For the smaller square im-
age, the TV prior performed the best for the basket-
ball player image, and the BM3Dprior performed the
best for both the artwork image and the Stanford logo
image.

When looking at the SSIM values, all values coin-
cide, except for a few differences: particularly, that
the RF prior did not perform the best in any scenario,
and that BM3D performed better than NLM for the
artwork image. This result doesmake sense, as BM3D
is commonly thought of as more effective than NLM.

This comparison data for both the PSNR and the
SSIM values can be summarized in Tables 1 and 2.

Table 1. Best image inpainting priors for each mask when
comparing PSNR.

PSNR Random Bars Square
Small
Square

Artwork BM3D NLM RF BM3D
Stanford
Logo BM3D NLM RF BM3D

Basketball
Players BM3D/TV TV TV TV

Table 2. Best image inpainting priors for each mask when
comparing SSIM.

SSIM Random Bars Square
Small
Square

Artwork BM3D BM3D BM3D BM3D

Stanford
Logo BM3D NLM NLM

TV/
NLM/
BM3D

Basketball
Players BM3D / TV TV TV TV

On the qualitative side, it is appropriate to com-
pare how well each prior performed for a given im-
age over the four corruptionmasks, as PSNRdoes not
necessarily exactly correspond to a visually pleasing
image.
First, to highlight some commonalities for all three

of the images, the large square mask corrupted too
much of the same area of image, causing none of the
images with this corruption mask to reconstruct the
masked area properly. The reconstructions with this
corruptionmask tended to properly reconstruct near
the borders of the corruption mask, but left the area
near the center of the corruption mask nearly unal-
tered. Most of the images did not have this problem
for the smaller square mask.
For the images of the artwork, the BM3D prior

worked qualitatively the best on the random corrup-
tion mask and the bar corruption mask. For the two
square corruption masks, the RF prior worked the
best. These results are unsurprising, as the artwork
exhibits much self-similarity.
For the images of the Stanford logo, the NLM prior

worked qualitatively the best on all four of the cor-
ruptionmasks. This intuitivelymakes sense, as by in-
spection, the image looks like it has many patches of
self-similarity. It is also interesting to note how badly
the TV performed in the inpainting process: there ex-
ists significant corruption inall of the reconstructions
where TV was used. This is especially surprising, as
the image looks incredibly sparse of gradients.
For the images of the two basketball players, the

TV prior worked qualitatively the best on all four of
the corruption masks. This result is unsurprising, as
the image looks like it has extremely sparse gradients.

4.3. Choices of ρ and λ

For all of the images produced using this method-
ology, a value of ρ = 1was found toworkwell. Increas-
ing or decreasing ρ = 1 by small amounts rarely will

change the final inpainted image, as ρ is associated
with convergence rates.
The choice of λ has a significant effect on the qual-

ity of the inpainted image, however. For each test im-
age, plots of both PSNR and SSIM vs. λ were gener-
ated (see Appendix C for all of these plots.) Based on
these plots, it was decided that for the TV and NLM
priors, λ= 0.01 would be used, and for the BM3D and
RF priors, λ= 0.005 would be used.

5. FutureWork
Future work for ADMM-based image inpainting is

abundant. For example, the results of Tables 1 and 2
suggest that there exist be a relationship between the
performance of image inpainting and the corruption
model used, which is unintuitive as the prior in gen-
eral is meant to model prior information on the im-
age rather than the corruption. Potential future work
might be to investigate whether the relationship be-
tween image inpainting performance and particular
corruption models can be quantified.
For another example of potential futurework, con-

sider that as is clear from Section 4, for each image
there exists a prior that quantitatively performs the
best, and a value of λ that produces the best results.
With the advent of machine learning and neural net-
works, it might be possible to implement a system
where based on the structure of the image, an al-
gorithm might be able to use images from a much
larger dataset to determine the best prior and values
of ρ and λ to use. Such a system would be able to
even develop a hybrid prior, or a prior that combines
previously-derived priors.

6. Conclusion
In conclusion, ADMM has been shown to be an

efficient and accurate method to implement image
inpainting. In addition, it has been shown that the
prior chosen significantly affects the performance of
ADMM, and that changing the corruption mask also
affects which prior performs best. Finally, the choice
of the convergence parameter ρ and the prior trade-
off parameter λ significantly affect the performance
of the reconstruction using ADMM.

References
[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester.

Image inpainting. In Proceedings of the 27th An-
nual Conference on Computer Graphics and Interac-
tive Techniques, SIGGRAPH ’00, pages 417–424, New
York, NY, USA, 2000. ACMPress/Addison-Wesley Pub-
lishing Co.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein. Distributed optimization and statistical learn-
ing via the alternatingdirectionmethodofmultipliers.
Found. Trends Mach. Learn., 3(1):1–122, Jan. 2011.

[3] A. Buades, B. Coll, and J. M. Morel. On image denois-
ingmethods. Technical report, Technical Note, CMLA
(Centre de Mathematiques et de Leurs Applications,
2004.

[4] A. Buades, B. Coll, and J. M. Morel. A non-local algo-
rithm for image denoising. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 2, pages 60–65 vol. 2,
June 2005.

[5] S. H. Chan, X. Wang, and O. A. Elgendy. Plug-and-
playADMMfor image restoration: Fixedpoint conver-
gence and applications. CoRR, abs/1605.01710, 2016.

[6] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Im-
age denoising with block-matching and 3d filtering,
2006.

[7] E. S. L. Gastal and M. M. Oliveira. Domain transform
for edge-aware image and video processing. In ACM
SIGGRAPH 2011 Papers, SIGGRAPH ’11, pages 69:1–
69:12, New York, NY, USA, 2011. ACM.

[8] M. Lebrun. An Analysis and Implementation of the
BM3D ImageDenoisingMethod. Image ProcessingOn
Line, 2:175–213, 2012.

[9] N. Parikh and S. Boyd. Proximal algorithms. Found.
Trends Optim., 1(3):127–239, Jan. 2014.

[10] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total
variation based noise removal algorithms. Phys. D,
60(1-4):259–268, Nov. 1992.

[11] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli. Image quality assessment: From error visibil-
ity to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

[12] G. Wetzstein. EE 367 / CS 448I Computational Imag-
ing and Display (Winter 2017) Notes: Compressive
Imaging and Regularized Image Reconstruction (lec-
ture 11), January 2017.

[13] G. Wetzstein. EE 367 / CS 448I Computational Imag-
ing andDisplay (Winter 2017) Notes: ImageDeconvo-
lution (lecture 6), January 2017.

A. Inpainted Images

Figure 4. Original image, corrupted image with random
mask, and inpainted image of Stanford logo with TV Prior.

Figure 5. Original image, corrupted image with bar mask,
and inpainted image of Stanford logo with TV Prior.

Figure 6. Original image, corrupted imagewith large square
mask, and inpainted image of Stanford logo with TV Prior.

Figure 7. Original image, corrupted image with small
squaremask, and inpainted image of Stanford logowith TV
Prior.

Figure 8. Original image, corrupted image with random
mask, and inpainted image of Stanford logo with NLM
Prior.

Figure 9. Original image, corrupted image with bar mask,
and inpainted image of Stanford logo with NLM Prior.

Figure 10. Original image, corrupted image with large
square mask, and inpainted image of Stanford logo with
NLM Prior.

Figure 11. Original image, corrupted image with small
square mask, and inpainted image of Stanford logo with
NLM Prior.

Figure 12. Original image, corrupted image with random
mask, and inpainted image of Stanford logo with BM3D
Prior.

Figure 13. Original image, corrupted image with bar mask,
and inpainted image of Stanford logo with BM3D Prior.

Figure 14. Original image, corrupted image with large
square mask, and inpainted image of Stanford logo with
BM3D Prior.

Figure 15. Original image, corrupted image with small
square mask, and inpainted image of Stanford logo with
BM3D Prior.

Figure 16. Original image, corrupted image with random
mask, and inpainted image of Stanford logo with RF Prior.

Figure 17. Original image, corrupted image with bar mask,
and inpainted image of Stanford logo with RF Prior.

Figure 18. Original image, corrupted image with large
squaremask, and inpainted image of Stanford logowith RF
Prior.

Figure 19. Original image, corrupted image with small
squaremask, and inpainted image of Stanford logowith RF
Prior.

Figure 20. Original image, corrupted image with random
mask, and inpainted image of art with TV Prior.

Figure 21. Original image, corrupted image with bar mask,
and inpainted image of art with TV Prior.

Figure 22. Original image, corrupted image with large
square mask, and inpainted image of art with TV Prior.

Figure 23. Original image, corrupted image with small
square mask, and inpainted image of art with TV Prior.

Figure 24. Original image, corrupted image with random
mask, and inpainted image of art with NLM Prior.

Figure 25. Original image, corrupted image with bar mask,
and inpainted image of art with NLM Prior.

Figure 26. Original image, corrupted image with large
square mask, and inpainted image of art with NLM Prior.

Figure 27. Original image, corrupted image with small
square mask, and inpainted image of art with NLM Prior.

Figure 28. Original image, corrupted image with random
mask, and inpainted image of art with BM3D Prior.

Figure 29. Original image, corrupted image with bar mask,
and inpainted image of art with BM3D Prior.

Figure 30. Original image, corrupted image with large
square mask, and inpainted image of art with BM3D Prior.

Figure 31. Original image, corrupted image with small
square mask, and inpainted image of art with BM3D Prior.

Figure 32. Original image, corrupted image with random
mask, and inpainted image of art with RF Prior.

Figure 33. Original image, corrupted image with bar mask,
and inpainted image of art with RF Prior.

Figure 34. Original image, corrupted image with large
square mask, and inpainted image of art with RF Prior.

Figure 35. Original image, corrupted image with small
square mask, and inpainted image of art with RF Prior.

Figure 36. Original image, corrupted image with random
mask, and inpainted image of two basketball players with
TV Prior.

Figure 37. Original image, corrupted image with bar mask,
and inpainted image of two basketball players with TV
Prior.

Figure 38. Original image, corrupted image with large
squaremask, and inpainted imageof twobasketball players
with TV Prior.

Figure 39. Original image, corrupted image with small
squaremask, and inpainted imageof twobasketball players
with TV Prior.

Figure 40. Original image, corrupted image with random
mask, and inpainted image of two basketball players with
NLM Prior.

Figure 41. Original image, corrupted image with bar mask,
and inpainted image of two basketball players with NLM
Prior.

Figure 42. Original image, corrupted image with large
squaremask, and inpainted imageof twobasketball players
with NLM Prior.

Figure 43. Original image, corrupted image with small
squaremask, and inpainted imageof twobasketball players
with NLM Prior.

Figure 44. Original image, corrupted image with random
mask, and inpainted image of two basketball players with
BM3D Prior.

Figure 45. Original image, corrupted image with bar mask,
and inpainted image of two basketball players with BM3D
Prior.

Figure 46. Original image, corrupted image with large
squaremask, and inpainted imageof twobasketball players
with BM3D Prior.

Figure 47. Original image, corrupted image with small
squaremask, and inpainted imageof twobasketball players
with BM3D Prior.

Figure 48. Original image, corrupted image with random
mask, and inpainted image of two basketball players with
RF Prior.

Figure 49. Original image, corrupted image with bar mask,
and inpainted image of two basketball players with RF
Prior.

Figure 50. Original image, corrupted image with large
squaremask, and inpainted imageof twobasketball players
with RF Prior.

Figure 51. Original image, corrupted image with small
squaremask, and inpainted imageof twobasketball players
with RF Prior.

B. NoiseMeasurement Tables

Table 3. PSNR Values, TV Prior

PSNR [dB] Random Bars Square
Small
Square

Artwork 19.29 28.37 19.80 27.74
Stanford
Logo 16.82 23.73 20.88 28.47

Basketball
Players 27.04 28.81 30.78 40.45

Table 4. PSNR Values, NLM Prior

PSNR [dB] Random Bars Square
Small
Square

Artwork 22.99 35.53 20.44 27.79
Stanford
Logo 19.90 28.06 22.08 27.80

Basketball
Players 25.56 27.34 28.85 31.65

Table 5. PSNR Values, BM3D Prior

PSNR [dB] Random Bars Square
Small
Square

Artwork 28.01 35.18 19.72 31.16
Stanford
Logo 20.11 27.03 20.55 28.70

Basketball
Players 28.04 28.04 28.80 32.55

Table 6. PSNR Values, RF Prior

PSNR [dB] Random Bars Square
Small
Square

Artwork 21.78 24.64 25.80 28.20
Stanford
Logo 17.62 17.05 22.65 18.70

Basketball
Players 23.70 25.77 27.73 28.03

Table 7. SSIM Values, TV Prior

SSIM Random Bars Square
Small
Square

Artwork .8062 .9638 .9275 .9704
Stanford
Logo .7990 .9555 .9233 0.9833

Basketball
Players .8780 .9515 .9821 .9870

Table 8. SSIM Values, NLM Prior

SSIM Random Bars Square
Small
Square

Artwork .8952 .9679 .9168 .9511
Stanford
Logo .8984 .9841 .9446 .9828

Basketball
Players .7929 .8792 .9074 .9107

Table 9. SSIM Values, BM3D Prior

SSIM Random Bars Square
Small
Square

Artwork .9559 .9782 .9344 .9737
Stanford
Logo .9042 .9765 .9255 .9849

Basketball
Players .8596 .9171 .9435 .9463

Table 10. SSIM Values, RF Prior

SSIM Random Bars Square
Small
Square

Artwork .8082 .8669 .8882 .9003
Stanford
Logo .7953 .7972 .8525 .9440

Basketball
Players .7123 .8106 .8401 .8417

C. Graphs of PSNR and SSIM vs. λ

Figure 52. Plot of PSNR vs. λ for test image of artwork.

Figure 53. Plot of SSIM vs. λ for test image of artwork.

Figure 54. Plot of PSNR vs. λ for test image of Stanford logo.

Figure 55. Plot of SSIM vs. λ for test image of Stanford logo.

Figure 56. Plot of PSNR vs. λ for test image of Stanford logo.

Figure 57. Plot of SSIM vs. λ for test image of Stanford logo.

