Investigating Image Inpainting via the Alternating Direction Method of

Motivation

In many imaging applications, there exists potential
for corruption of the images by sources of noise that
completely lose original pixel information, such as
degradation over time [1]:

Corrupted Image Inpainted Image

Image inpainting allows for the estimation and

restoration of missing pixels
The inpainting process leaves some artifacts behind

and is usually not perfect
Accuracy of the inpainting is related to the prior used

ADMM & Image Inpainting

The Alternating Direction Method of Multipliers
(ADMM) [2] solves the following optimization
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ADMM is general, simple, and parallelizable [2]
Solved using the following update procedure [2] [3]:
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Image inpainting can be formulated in the ADMM
framework:

minimize [Kx- b|j5+ AT (2)

subjectto x-z=0

b is observed, K is the diagonal inpainting mask, and
I'(z) is the prior information on the image
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Prior Selection
I'(z) = Al Dzl

Total Variation [4]
» Used when image sparse gradients
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 Makes use of finite difference matrix D 7
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Non-Local Means [5] 1
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» Used when image has self-similar structure Wi, )= 5 exp 12
* Weighted sum of differences in neighborhoods
jel
Recursive Filter [0]
« Takes an image, transforms it into a new domain
(right), filters the transformed signal with a

Gaussian filter, and inverts the transformation.
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* Used when image has a locally sparse Observed
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Methodology and Results

Formulate image inpainting as an ADMM problem and solve using ADMM
Use “Plug-and-Play” ADMM [8] as an open source ADMM solver
Measure PSNR and SSIM of inpainted images, using different corruption masks
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» Performs block matching, denoising in 3D [Block Matching% [Thresholding} f
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Example results:

Recovered Image, TV Prior
A = 0.010, p = 1.00
PSNR = 27.04 dB, SSIM = 0.8780

Corrupted Image

Original Image 65.271 Percent of Data Missing

'
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Results / Discussion

In most cases, corruption mask determined which
prior gave highest quality output
Some images will perform better with a particular

prior regardless of the mask type
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Value of A greatly affects performance: Optimal
values for the test images =0.01 for TV and NLM
priors, =0.005 for BM3D and RF priors.

Future Work

Quantify relationship between mask type

(corruption model) and priors, if any

Machine learning applications:

 An algorithm might be able to use other test
images to determine best prior, A to use for a
given image.

Conclusion

ADMM is an efficient and effective way of
implementing image inpainting

Not only does the image itself affect prior selection,
but the corruption model affects which prior to
use
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