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Abstract

Light field images present a rich, compact, dataset of
multiple images of a scene from slightly shifted viewpoints. I
explore the use of an optical flow algorithm on light field im-
ages to estimate depth. The optical flow algorithm is simple
to implement as does not require finding correspondences
between images. Further, I explore the use of image priors
and modern optimization techniques to form a better esti-
mate. Where camera parameters are available, I estimate
the metric depth of objects in a scene.

I compare my the results of my algorithm with the re-
sults from a focal stack algorithm, the depth map produced
by Lytro, and with ground truth from a synthetic dataset.
The results show that it performs better than the basic depth
from f algorithm, and gives comparable results to the Lytro
map and ground truth in areas where the image has suffi-
cient features.

1. Introduction
Depth estimation of 2D images requires a set of at least 2

images, and usually involves a feature matching algorithm.
This problem can be simplified by using a light field cam-
era, that embeds multiple images from slightly shifted view-
points into a single sensor, thus eliminating the need for cal-
ibration of multiple cameras.

Further, using an optical flow (OF) algorithm to estimate
depth removes the need to solve the feature matching prob-
lem, which can be tricky for images with regular patterns.
The optical flow is the ratio of the pixel shift to its corre-
sponding viewpoint shift, and be calculated only with image
gradients.

With the optical flow estimate, the metric depth can be
derived if certain camera parameters are obtained. Without
those parameters, the relative depth can still be visualized.

2. Related Work
Adelson et al. was one of the early researchers in this

field who described a design for a plenoptic camera [1].
This camera had a microlens array in front of the sensor, that

would split light coming from different angles onto different
pixels. Since then, companies such as Lytro and Raytrix
have made consumer light field cameras readily available.

Adelson et al. proposed a basic OF algorithm for depth
estimation. OF algorithms have also been applied to esti-
mate depth from video [5]. Others have researched other
techniques such as feature matching, focal stack analysis,
or combinations of them [6]. These techniques tend to per-
form well for the specific kinds of pictures, that have fea-
tures that suit the algorithm.

My approach combines Adelson’s OF algorithm, with
an image prior. I also estimate metric depth when camera
parameters are available. When not available, Williams et
al. [7] and Bok et al. [2] have described calibration tech-
niques to recover these parameters.

3. Methods
3.1. Optical Flow

determine ’pixel velocities’, or pixel shifts from subse-
quent video frames. For the light field image, the reference
variable is viewpoint shift and not time, and hence optical
flow measures the pixel shift over the viewpoint shift.

The basic equations in [1] for optical flow estimation are
rederived in greater detail here. Let I(x, y, vx, vy) be the
pixel (x, y) at viewpoint (vx, vy) of a light field image. We
take the center view as the reference and find the average
optical flow with respect to all other viewpoints. We scale
the viewpoint and pixel baselines to have increments of 1.
Let a viewpoint be shifted by ε in the α direction:

∆vx = ε cosα,∆vy = ε sinα

Let the optical flow at a pixel, h be

h =
∆x

∆vx

=
∆y

∆vy

The ratio is equivalent in the x and y directions by similarity
of triangles. A shift in viewpoint is thus related to a shift in
pixel by h:

I(x, y, vx, vy) = I(x− hε cosα, y − hε sinα,

vx + ε cosα, vy + ε sinα)



We introduce the following notation and definition for par-
tial derivatives:

Ix = I(x+ 1, y, vx, vy)− I(x, y, vx, vy)

Ivx =
I(x, y, vx + k, vy)− I(x, y, vx, vy)

k

Iy, Ivy are similarly defined. Thus we linearize the shifted
I about (x, y, vx, vy):

I(x− hε cosα, y − hε sinα, vx + ε cosα, vy + ε sinα)

≈ I(x, y, vx, vy)− Ixhε cosα−
Iyhε sinα+ Ivxε cosα+ Iyε sinα

To smoothen our estimate of h at I(i, j, k, l), we estimate it
for a small 4D patch P of ((2n+1)×(2n+1)) neighboring
pixels, and all other viewpoints. Summing over the patch P
is defined as follows:

∑
P

I(x, y, vx, vy) =

i+n∑
x=i−n

j+n∑
y=j−n

∑
vx 6=k

∑
vy 6=l

I(x, y, vx, vy)

We then apply the Taylor linearization to simplify the error
defined as:

E =

2π∫
0

∑
P

(I(x, y, vx, vy)− I(x− hε cosα, y − hε sinα,

vx + ε cosα, vy + ε sinα))2dα

=

2π∫
0

∑
P

(−Ixhε cosα− Iyhε sinα+

Ivxε cosα+ Iyε sinα)2dα

Differentiating with respect to h and setting to 0 gives the
following expression for the optimal h:

ĥ = arg min
h
E

=

∑
P

IxIvx + IyIvy∑
P

I2x + I2y

For faster computation of ĥ the summation over P can
be computed as multiplication with a kernel K in the fre-
quency domain:

Let K = 1 ∈ R2n+1×2n+1

ĥ =

F−1
(
F(K)F(IxIvx + IyIvy )

)
F−1

(
F(K)F(I2x + I2y )

)

3.2. Regularization

Let H be the vector of ĥ values at every pixel. We define
a confidence weight, C for our H estimate based on the
pixel gradients:

C = diag((DxH)2 + (DyH)2)

where D is the differential operator. We estimate a smooth
value of H , Hs, by minimizing a total variation loss:

L(Hs) =
1

2
||C(Hs −H)||22 + λ||DHs||1

Since the L1 norm is nonconvex, we use the ADMM algo-
rithm [3], and reformulate the minimization problem as:

min
Hs

1

2
||C(Hs −H)||22 + ||z||1

subject to DHs − z = 0

The augmented loss function is thus:

Lρ(Hs, z, u) =
1

2
||C(Hs −H)||22 + ||z||1+

yT (DHs − z) +
ρ

2
||DHs − z||22

The ADMM update rules are as follows:

H(0)
s = zeros(W,H)

z(0) = zeros(W,H, 2)

u(0) = zeros(W,H, 2)

H(k+1)
s = arg min

Hs

1

2
||C(Hs −H)||22+

ρ

2
||DHs − z(k)||22

= (CTC + ρDTD)−1(CTCH + ρDT (z(k) − u(k))

z(k+1) = arg min
z
||z||1 +

ρ

2
||DH(k+1)

s − z + u(k)||22

= Sλ
ρ

(DH(k+1)
s + u(k))

where SK(v) =


v − k v > k

0 |v| < k

v + k v < −k

u(k+1) = u(k) +DH(k+1)
s − z(k+1)

3.3. Metric Depth Estimation

Since h is defined with integer pixel and viewpoint shifts,
the following camera parameters are needed to estimate the
metric depth:
W : sensor width
N : no. of pixels along sensor width



b: baseline between viewpoint shifts
f : focal length of lens
Sf : focal plane of lens

Given the relative h, we derive the metric hm:

h =
∆x

∆vx

hm = h
W/N

b

Extending [1], the formula for depth d given optical flow
hm can be derived as follows:

1

d
= hm(

1

f
− 1

Sf
) +

1

Sf

d =
fSf

hm(Sf − f) + f

≈ fSf
hmSf + f

If no camera parameters are available, the relative depth is
estimated as follows:

dr =
1

h−min(h) + 1

4. Results

The algorithm was tested with images taken with light
field images taken with a Lytro Illum camera, and with from
a synthetic dataset [?]. It was run in MATLAB on my per-
sonal laptop, and took about 50 s to generate the depth map.
The command line tool provided by Lytro takes about 30 s.
The color map for the results shown is as follows:

4.1. Flowers

The following shows results of flowers against a sky,
taken with a Lytro Illum:

scene

unregularized OF depth

regularized OF depth

The results show how the total variation prior removes
noise from the raw depth estimate. The depth of the blue
sky however is inaccurate, as there simply aren’t enough
features.

4.2. Books

The following shows a scene with books at different
depths, and a comparison with the focal stack algorithm as
implemented in the homework.

scene



regularized OF depth

unregularized OF depth

unregularized focal stack depth

The nearest book in the regularized OF results shows
how the TV prior fills in the dark cover with estimates from
the feature-rich title text. Even in its unregularized form,
the OF results is a lot less noisy than the focal stack algo-
rithm. The focal stack algorithm also produces inaccurate
artifacts at the lines of the image, such as the blue edges for
the nearest book.

4.3. Town

The following shows the results on an image provided
by a dataset from HCI, Heidelberg University and the Uni-
versity of Konstanz [4]. The dataset provided the ground
truth depth, and the camera parameters required to estimate
metric depth.

scene unregularized OF depth

regularized OF depth ground truth

The OF algorithm performs well where there are suffi-
cient features. For areas without features, h ≈ 0, and the
depth is pegged to the depth to the focal depth (green color).
The following plots show the quantitative difference from
the ground truth. The estimated depth along the scan line is
plotted against the ground truth depth.

error plots

metric depth at scan line

The ground truth error is defined as the sum squared dif-
ference betweeen the estimated depth and ground truth op-
tical flow. The ADMM error decreases with each iteration
as expected, but the ground truth tapers slightly upward at



the end. This could be due to over-distortion by the ADMM
algorithm.

The metric depth at the scan line shows that the scale of
the depth is correct. The depth estimation for the 2 near-
est towers is reasonably accurate. However it is off for the
distant background. The h values could be too low, making
the estimate pegged to the focal plane at 24 m. The regu-
larizer does a good job at smoothening out the noisy initial
estimate.

4.4. People

The following shows a scene with people in a hallway,
and compares the results with the depth map provided by
Lytro:

scene

regularized OF depth

lytro depth

The OF algorithm is able to resolve the people at differ-
ent depths, and the far end of the hallway. However, the
Lytro map does better at low-feature areas, such the dark
sweater of the closest passerby.

4.5. Simple Books

The following scene shows 3 books wrapped in newspa-
per for better features:

scene

unregularized OF depth

regularized OF depth

lytro depth

The regularized output captures the 3 planar depths of
the books. However, the floor is over-smoothed, and does
not show the linear distance to the camera. The Lytro depth
map is able to capture this.

5. Conclusion
The optical flow algorithm works decently well with

light field images. It is simple and efficient to implement
in the frequency domain. This makes it preferable to the
focal stack algorithm. The unregularized results are noisy,
but still better than that of the focal stack algorithm.

With a weighted confidence and TV prior smoothening,
it is able provide good estimates for feature-rich regions. If
the features are sparse but evenly scattered in the image, the
TV prior can help to fill in the feature-less areas.

However, for completely feature-less regions, such as the
sky, it performs poorly. The Lytro depth map is more robust.



To improve this aspect of the algorithm, more sophisticated
priors would be needed. For instance, one could segment
the image, and estimate the depth of each segment individ-
ually. For sections, where the estimate is unconfident, visual
recognition algorithms could be applied to learn what those
segments are. These algorithms rely on surrounding regions
and color, and thus won’t be limited if the local region is de-
void of features.

This project also explored the accuracy of the metric
depth estimation, when camera parameters are available.
The estimates weren’t extremely accurate, and more test-
ing needs to be done with real datasets. For this, camera
calibration would need to be done.

The optical flow algorithm combined with image priors
and camera calibration, has the potential to provide robust
and accurate depth estimation. This makes the light field
camera a powerful sensor for applications in robotics, VR,
automation, and many other fields.
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