
Depth from Defocus for Misaligned Mobile

Photos Subject to Parallax Effects

Robert Mahieu
Department of Electrical Engineering

Stanford University
rmahieu@stanford.edu

Abstract—This paper describes and implements an at-
tempt to solve the problem of determining depth from
defocus when given a focal stack (set of photos taken
at different focuses) created from photos captured with
a hand-held camera with unknown calibration. Although
the photos may initially suffer from significant parallax
due to camera/hand movement during capture, the image
alignment steps explained in Section III are shown to be
capable of compensating for such issues. Relative depth
results are computed quickly, though suffer from some
shortcomings around depth edges as discussed in Section
VII. The final computed depth map is also shown to
be sufficient for rendering visually pleasing synthetically
refocused photos of the scene.

I. INTRODUCTION

Obtaining the depth map of a scene has many benefits
in photography, such as providing the ability to refocus a
photo after-the-fact or, most notably, enabling the camera
to auto-focus by setting its focal plane to the depth
of a specific object. However, with photographs taken
only from a single viewpoint, and without using any
specialized depth sensors, the problem of determining
scene depth becomes difficult.

When capturing a photograph of a scene, how focused
an object becomes in the resulting photo is a direct result
of its distance from the focal plane of the camera. The
farther the object is from this focal depth, the more
blurring that occurs on the camera sensor. Consider, then,
a case in which we take a photo with the focal plane set
at the depth of the closest object in the scene. If we
possessed a copy of this photograph with every object
in focus, it might then be possible to estimate the size of
the blur kernel (point spread function) that produced the
actual blurry photograph, thus enabling us to determine
a measure of relative depth of each object in the scene.

The notion described above is the main idea behind
depth-from-defocus (DfD) techniques, which attempt to
reconstruct a depth map of the scene using a set of
photographs, referred to as the focal stack, which are
each taken of the same scene with the camera set to

different focal depths. Throughout this paper we assume
that the first image in the stack is captured with the focal
depth set to the depth of the closest object in the scene
and the last captured with the focal depth set to the depth
of the furthest object.

Utilizing such a DfD technique on hand-held mobile
cameras, however, becomes challenging due to the in-
evitable motion of the camera that occurs between the
capture of each photo in the focal stack from involuntary
hand movement. In this scenario, the photos will likely
be subject to significant parallax effects, causing some
objects that are behind others to be captured in one
image but not show up at all in others. This then leads to
error within depth computation as corresponding pixels
in each image in the focal stack do not represent the
same object. Furthermore, we assume that calibration of
the hand-held camera is unknown, so we cannot leverage
aperture, focal length, and focal depth values in our
solution.

While realignment through affine image registration
may work well enough for sufficiently small motion,
the effects of parallax caused by large motion are too
substantial to correct for using only this method. In-
stead, this paper describes a more robust technique that
uses a combination of affine transformation and optical
flow fields to register images in the focal stack before
estimating depth.

The complete proposed system takes as input a focal
stack generated from a hand-held camera. The first step
is to stabilize the photos relative to the first image in
the stack by correcting for magnification differences and
parallax between all the photos. Using this aligned focal
stack, then compute an all-in-focus photo by formulating
this task as a Markov Random Field (MRF) optimization
problem. Finally, using the all-in-focus image, determine
the size of the blur kernel at each pixel that produces
the most similar results to the images in the focal stack.
Using the results for the photos in the stack with the

closest and furthest focal planes, we can then use the
kernel size per pixel as a measure of relative depth for
the objects in the scene.

II. RELATED WORK

Most work into depth-from-defocus techniques as-
sumes camera calibration parameters are known, which
provides a simplification from the problem investigated
within this project. However, some work has been done
under these constraints. Ens and Lawrence [1] proposed
an iterative matrix based method, using only two images
of the same scene taken at different focal depths, to
solve for the defocus operator. They used a precomputed
table of one of the photos filtered by different defocus
operators to select the operator for each pixel’s local
neighborhood which minimized difference with the other
photo. This showed promising results and essentially
describes the technique utilized in the system used here
in this paper for determining relative depth.

A recent extension of this work done by Mannan and
Langer [2] formulates the problem in 2D and in the filter
space with explicit non-negativity and unity constraints.
Their optimization problem is solved with Quadratic
Programming. This approach makes no assumptions
about the type of point spread function present, though
it requires use of special calibration and test images and
cannot use photos of a regular scene.

Furthermore, Suwajanakorn et al. [3] recently pro-
posed a pipeline for determining, from a focal stack
produced with a hand-held camera, not only depth from
focus but also aperture size, focal length, and focal
depths (up to an affine ambiguity) for each photo by
formulating an optimization problem that jointly solves
for all parameters. This work describes the focal stack
stabilization as well as the all-in-focus image generation
techniques utilized in the system in this paper.

III. IMAGE ALIGNMENT

To compensate for camera movement during capture
of the focal stack, realignment of the photos must be
done as a first step. Magnification changes are first rec-
onciled by matching all images in the focal stack to the
first image with affine registration, which solves for an
affine transformation that best matches the images. This
project uses the Lucas-Kanade inverse compositional it-
erative registration algorithm from the Image Alignment
Toolbox [4] to determine each individual transforma-
tion between consecutive photos, then multiplies these
transformations appropriately to get a transformation for
each photo that matches it to the first photo. For a
set of images of size 363x653 pixels, this step took

about 1.5sec per image. We set the algorithm to use 50
iterations at only a single level.

To then handle the parallax discrepancy between pho-
tos, we solve for a dense correction field using optical
flow. Let Ii denote photo i in the focal stack, and let
F j
i : R2 → R2 denote the optical flow field matching
Ii to Ij . To complete this matching step, first the 2D
optical flow field between each consecutive image in the
now affine-aligned focal stack, F 1

2 , F
2
3 , F

3
4 , ..., F

N−1
N , is

determined. We compute optical flow fields using the
MATLAB implementation by Ce Liu [5] which was able
to produce very good results at around 4sec per image.

To then get the flow field for each image that aligns
them to I1, we concatenate the flow fields utilizing the
following warping function, which is formulated as a
way to align an image I according to the flow field F :

WF (I(u, v)) = I(u+ F (u, v)x, v + F (u, v)y)

Where Fx and Fy are the x- and y-components of
the flow field respectively. To concatenate flow fields
and compute each alignment field relative to I1, we
recursively perform warping of each flow field according
to the formula F 1

i = F i−1
i ◦ F 1

i−1 using the ◦ operator
defined as S = F ◦ F ′ where:

Sx = F ′x +W ′F (Fx)

Sy = F ′y +W ′F (Fy)

Since we already have F 1
2 at the start of this step, we can

then compute F 1
3 , then F 1

4 , and so on according the the
formula above. Once we have these concatenated flow
fields, we can then perform alignment for each image Ii
by computing Îi =WF 1

i
(Ii). To fill holes in the resulting

warped image, our implementation uses a simple linear
interpolation, though to get better results we strongly
recommend using an inpainting method.

IV. ALL-IN-FOCUS IMAGE

Using this aligned focal stack, with each image now
denoted by Îi, we can now compute a photo of the scene
where every object is in focus. This all-in-focus image
is generated by using for each pixel, the image in the
focal stack in which that pixel is “sharpest”. This then
requires us to create a sharpness metric which we define
as the weighted sum of the image gradient magnitude,
expressed as exp |∇I(u, v)|, in a Gaussian neighborhood
with isotropic variance σ2 around our target pixel (u, v).
We were able to achieve good results using the Sobel
operator for the image gradient computation as well
as a standard deviation of 3 pixels for the Gaussian
neighborhood.

2

To actually choose, for each pixel in our all-in-focus
image, the index of the best image in the focal stack,
we represent the problem as a Markov Random Field
(MRF) subject to the following energy function:

E(x) =
∑
i∈V

D(xi) + λ
∑

(i,j)∈E

V (xi, xj) (1)

Where the variable x represents a set of assigned indices
for all pixels. We represent pixels in the image as
the graph nodes, i ∈ V , and use the edges of the
graph, E , to represent a 4-connected relationship between
neighboring pixels. We define the unary potential (data
cost), D(xi), of a pixel i being assigned an index xi as
the sharpness metric value computed according to the
description above.

We also define the interaction potential (smoothness
cost), V (xi, xj), of pixels i and j being assigned indices
xi and xj respectively as the absolute difference between
the index values: |xi−xj |. This term is also regularized
by the parameter λ which controls the importance of
obtaining smooth results. One of the primary benefits of
formulating this problem as an MRF is the ability for us
to impose this smoothness constraint on the result. As
we have it defined, this smoothness constraint functions
as a linear total variation prior. Figure 1 illustrates this
effect.

The optimization problem of minimizing the energy
function in Equation 1 is solved in our implementation
using the α-expansion graph cuts algorithm implemented
in MATLAB by Veksler and Delong [6][7][8]. For a
focal stack of 13 363x653 images, the all-in-focus image
was generated in about 16sec.

V. DEPTH ESTIMATION

Now that we have our all-in-focus image, which we
will denote as ÎAF , we can now proceed to actually
determine a measure of depth for the objects in our
scene. We do this for a given image in the focal stack, Îi,
by comparing a local neighborhood around each pixel to
the corresponding region in several copies of the all-in-
focus image convolved with blur kernels of various sizes
and then selecting the kernel that produced the image
that matches best.

The first part of this step is to create the uniformly
blurry images from ÎAF . We assume a disk point spread
function and therefore convolve ÎAF with several disk-
shaped blur kernels of increasing radius r. In our im-
plementation we used radii from 0.25px to 6.50px in
increments of 0.25. This then generates a set of images
which we can refer to as the blur stack and denote each
image as Br where r signifies the radius of the blur

Fig. 1: Example of smooth results possible using this method for all-
in-focus image creation. Top) All-in-focus image. Bottom) Index map
generated from MRF optimization.

kernel that produced it. Note that we also have B0 =
ÎAF as part of the stack. Additionally, we grayscale the
all-in-focus image prior to these computations and thus
produce single-channel blurred images.

Next we attempt to find the closest match among the
blur stack images for each pixel in some reference image
I , which we assume has been grayscaled. To do this,
we compute a difference map, Dr : R2 → R, for each
kernel radius r by taking the sum of absolute difference
between the reference image I and the blurry image Br

over a Gaussian neighborhood around each target pixel.
This is reflected in the following equation:

Dr(u, v) =
∑

(u′,v′)

w(u′ − u, v′ − v)|I(u′, v′)−Br(u
′, v′)|

Where (u, v) represent the coordinates of the target
pixel and (u′, v′) refers to all pixel coordinates in the
neighborhood. w(u, v) refers to a Gaussian weighting
function centered at (0,0). In our implementation we ob-
tained good results using an isotropic standard deviation
of σ = 11px for the Gaussian, though this parameter
is somewhat image-dependent and should be tuned for
images of different sizes and contents.

To then choose which kernel size to select for each
pixel, we compute what we refer to as a radius map.
This is done by determining the kernel radius that had
produced the best-matching image in the blur stack:

R(u, v) = δ · argmin
r

Dr(u, v) (2)

3

(a) Focal Stack (b) All-in-Focus (c) Complete Radius Map (d) Refocus

Fig. 2: Examples of results generated from hand-held camera photos captured during large motion. Top focal stack images taken from [3]. (a)
shows the input to the system, (b) shows the all-in-focus image generated from the input, (c) shows the relative depth map computed, and (d)
gives one example of possible refocusing that can be achieved using the computed depth.

Note the presence of scale factor δ which works to
undo the magnification correction we originally applied
in the affine alignment step. This is important because
without this scaling, our resulting radius value would
not properly represent the actual object depth at that
pixel. To compute δ our implementation simply uses
the inverse of the average of the sx and sy scale terms
within the affine transformation matrix T we applied to
the reference image during alignment:

δ =

(
T11 + T22

2

)−1
Because the Î1 photo should have its focal depth set to

the depth of the closest object in the scene, the radius of
the blur we detect at each pixel in the image will directly
correlate to the depth of the object at that location.
Similarly, the ÎN photo should have its focal depth set
to the farthest object in the scene, so the blur radius
will negatively correlate to scene depth. Therefore, if
we perform this radius-map computation step using both
Î1 and ÎN as reference images (creating maps R1 and
RN respectively), we can finally construct a complete
radius map representing the relative depth of the scene
by combining the two results according to:

Rcomplete = R1 + (maxRN −RN)

This can now function as a depth map for the scene.

VI. REFOCUSING

To demonstrate the use of this result, we can produce
synthetically refocused photos of the scene. This can be
done for some specified relative depth drel (typically

between 0 and 13 in our case since our max test radius
was 6.5px) by convolving the all-in-focus image ÎAF

with a spatially varying disk blur kernel of radius:

r(u, v) = |Rcomplete(u, v)− drel|

This is a very time consuming process—we found that
each refocused image took around 41sec to generate—
but does produce some interesting results.

VII. RESULTS & DISCUSSION

Some selected results are illustrated above in Figure
2. We find that the algorithm generally produces strong
results, and seems to perform better when there are large
areas in the scene that lie at the same depth. This is
likely a result of the size of the Gaussian neighborhood
we utilize during difference map computation. Even so,
in more complex scenes such as the leaves photoset
shown on the bottom of Figure 2, where the photographs
were taken with not only hand movement but also with
the leaves themselves shaking in the wind, we are still
able to produce visually pleasing results during synthetic
refocusing (Figure 2d).

Our implementation was done fully in MATLAB, and
processed a focal stack of 13 368x653 pixel photos in
about 2.5min plus around 41sec per refocused image
rendered. This is a significant decrease from the time
taken by [3], which took over 9min to complete similar
steps, but at a noticeable loss in quality.

One of the major shortcomings of our implementation
comes from the fact that during optical flow warping,
holes in the resulting image are filled by simple linear
interpolation between pixels. This certainly contributes

4

to the speed of our pipeline, but we suggest that future
implementations use some form of inpainting instead.
The interpolation artifacts are very noticeable when large
parallax is present and cause problems at the depth
boundaries. Examples of this issue are shown below in
Figure 3.

Fig. 3: Examples of artifacts produced from linear interpolation during
optical flow warping. The above images were generated after image
alignment.

VIII. CONCLUSION

The results from this paper show that even with
significant hand movement during photo capture on an
uncalibrated hand-held camera, it is possible to recon-
struct a sufficient measure of depth within the scene.
This has potential for use in many applications such
as after-the-fact image refocusing, scene reconstruction,
or scene understanding. The fact that this technique is
possible using photos from mobile devices is a step
towards making such technology available to the average
consumer.

REFERENCES

[1] Ens, John, and Peter Lawrence. “An investigation of methods
for determining depth from focus.” IEEE Transactions on pattern
analysis and machine intelligence 15.2 (1993): 97-108.

[2] Mannan, Fahim, and Michael S. Langer. “Blur calibration for
depth from defocus.” Computer and Robot Vision (CRV), 2016
13th Conference on. IEEE, 2016.

[3] Suwajanakorn, Supasorn, Carlos Hernandez, and Steven M. Seitz.
“Depth from focus with your mobile phone.” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.
2015.

[4] Evangelidis, G. “IAT: A Matlab toolbox for image alignment.”
(2013).

[5] Liu, Ce. Beyond pixels: exploring new representations and ap-
plications for motion analysis. Diss. Massachusetts Institute of
Technology, 2009.

[6] Boykov, Yuri, Olga Veksler, and Ramin Zabih. “Fast approximate
energy minimization via graph cuts.” IEEE Transactions on pattern
analysis and machine intelligence 23.11 (2001): 1222-1239.

[7] Kolmogorov, Vladimir, and Ramin Zabin. “What energy functions
can be minimized via graph cuts?.” IEEE transactions on pattern
analysis and machine intelligence 26.2 (2004): 147-159.

[8] Boykov, Yuri, and Vladimir Kolmogorov. “An experimental com-
parison of min-cut/max-flow algorithms for energy minimization
in vision.” IEEE transactions on pattern analysis and machine
intelligence 26.9 (2004): 1124-1137.

5

IX. APPENDIX: EXTENDED RESULTS

(a) All-in-focus (b) Relative depth (c) Refocus example

TABLE I: Experimental results. (a) shows all-in-focus images, (b) shows estimated relative depth maps, and (c) shows refocusing examples.

6

