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Figure 1: Occlusion removal pipeline. The input image (left) is part of a focal stack representing a light field. Each image is
taken with the camera shifted horizontally a set amount. The occlusion is detected and masked (center), using the obstruction-
free photography technique [8] which leverages motion fields to detect occlusions. Finally, the missing pixels are filled using
patch-based texture synthesis (right) with patches from the median image.

Abstract

We present a novel method for detecting occlusions and
in-painting unknown areas of a light field photograph,
based on previous work in obstruction-free photography
and light field completion. An initial guess at separating
the occluder from the rest of the photograph is computed by
aligning backgrounds of the images and using this informa-
tion to generate an occlusion mask. The masked pixels are
then synthesized using a patch-based texture synthesis algo-
rithm, with the median image as the source of each patch.

1. Introduction
Occlusions are a common problem in photography. In

some cases, scenes may have accidental occlusion, such
dirty lenses or architectural artifacts; in others, occlusion
may be unavoidable, as in systems with fixed cameras, such
as surveillance networks.

Removing such objects, then, is the task of selecting the
occluding region and filling in the scene behind it. While
occluders necessarily represent gaps in information about
the scene, there are ways to augment data collection in or-
der to conduct the in-painting of occluded regions. In tra-
ditional cameras, photographs from multiple angles provide
this information. One of the strengths of a light field photo-

graph is that it allows us to see ”around” occluders, leverag-
ing the extra information from the light field to fill in unseen
areas of the photograph. With the advent of light field cam-
eras it has become possible to remove occluders with the
data from a single light field image.

The term ”occlusion” often extends to both physical
occlusions, which are completely opaque, and reflections,
which preserve some of the scene behind them. While this
project focuses solely on physical occlusions, the frame-
work could easily be extended into the realm of reflections.

The system presented here takes an input sequence of a
light field, which can be 4D image, as generated by Lytro
cameras, or a simple horizontal light field consisting of
evenly shifted images. It then automatically registers the
images and uses these aligned images to detect the occlu-
sion. Finally, the system masks the occlusion and completes
the unknown regions of the scene using existing data from
the image, rendering a full light field with the occlusion
completely removed, as shown in figure 1.

2. Related Work

Removal of occluding objects is a commonly-researched
subject, and there are many methods addressing the problem
in conventional cameras. The process of occlusion removal
can be broken down into two key areas: occlusion detection
and image completion.
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Figure 2: To detect the occlusion we run the Canny edge detector and extract corners (top left). These corners are used to
generate a motion field (top center). From the motion field, we calculate a transformation to align the images and take an
average (bottom left). Finally, we assign pixels to the occlusion mask (top right) or the background (bottom right) based on
the difference in intensity between any pixel and the average.

2.1. Conventional occlusion removal

Favaro [5] presents an algorithm that requires multiple,
highly-textured images in order to see beyond occlusions in
a scene. Gu [6] provides a method that requires several cal-
ibration images to remove image artifacts due to dirty cam-
era lenses. Yamashita [9] targets occluding fences, specifi-
cally, using information from a series of images at different
focal depths to remove these artifacts.

However, capturing multiple photographs for occlusion
removal is a nontrivial task, as it requires a certain level of
precision and consistency between photographs. The light
field camera, records this data in a single image, remov-
ing the need for multiple photographs. It would be ideal to
leverage this additional data for more accurate, occlusion
removal, from a single photograph.

2.2. Occlusion detection

Occlusion detection is often a manual step in the occlu-
sion removal pipeline. Many systems allow users to manu-
ally specify which regions of the image are occlusions.

Alternatively, classical computer vision has many tech-
niques to register images and detect occlusions, which are
here defined as objects that have significant shifts in po-
sition across the focal stack when the background is fully
registered. There are also techniques for removing regular
occlusions, such as fences or evenly spaced grids [7]. These
methods are all tailored for a specific type of occlusion, re-
lying on this expected structure to perform the occlusion

detection and removal.
Xue et al [8] introduced an ”Obstruction-Free Photog-

raphy” technique that simply required a series of horizon-
tally shifted images in order to detect the occluding object.
This system builds on that algorithm, utilizing the initial-
ization techniques they present. However, the Obstruction-
Free Photography methodology requires that every pixel in
the ”ground-truth” scene be visible somewhere in the cap-
tured image stack. By utilizing a more generic image com-
pletion technique, this system relaxes that constraint.

2.3. Image completion

Once the occluding region has been identified, a system
must determine how to best fill in the missing information.
The obvious approach to occlusion removal is to simply
take the average of all pixels in the light field patch, but
this approach does not preserve detail or utilize any of the
depth or positional information encoded in a light field pho-
tograph.

A next step would be to simply to mask the occluded
areas, and use texture synthesis [4] or image in-painting
[1] to fill in the unknown regions. Unfortunately, these ap-
proaches require a certain density of data to be effective, and
relevant information is often scattered across light fields.
Simple integration operations fail for the same reasons [3].

Yatziv et al [10] implemented a median-image based
synthesis technique that performs very well on large oc-
clusions, and our occlusion removal system builds on this,
incorporating previous work to automate the detection of



Figure 3: The median image is calculated by taking the median non-null pixel in each patch of the light field (left). The
confidence value for each median pixel is also visualized (center). Using the median and confidence, we are able to synthesize
the missing portions of the image (right).

occlusions rather than relying on the user to specify the oc-
clusion mask.

3. Data
The system was tested on a sequence of photographs

from a controlled setting, with a ground truth decomposi-
tion between occluder and background. The camera was
shifted horizontally a fixed amount and scene was structured
such that the occluder was between the background and the
camera. The occluder was also required to be opaque.

4. Occlusion detection
The two key stages of occlusion removal are occlusion

detection and image completion. Given a photograph with
no metadata, the system uses reference layers to detect
which pixels are part of the occlusion and remove them.
This initial occlusion detection, which can be defined as a
decomposition of the image into occlusion and background
components, is based off of the initialization stages of the
Obstruction-Free Photography [8] algorithm.

The occlusion detection first computes a motion field for
each layer, then uses these motion fields to align each im-
age in the focal stack. These aligned images are used to
calculate the occlusion and background components. The
full process is visualized in figure 2.

4.1. Motion estimation

We first pick a central layer of the focal stack to be
the reference image. The motion-based occlusion detection
system calculates a motion field between each layer and the
reference image, then uses this motion field to align the im-
ages.

Rather than computing a motion field over individual
pixels, the system uses an ”edge flow” algorithm, comput-
ing the flow between edges in each layer. We first use the
Canny edge detector to extract the edges and isolate the cor-
ners within the image. The Lucas-Kanede method is used to

approximate the motion between each individual layer and
the reference layer.

4.2. Image alignment

Having obtained this sparse motion field between each
layer of the focal stack and the central reference layer, we
generate a transformation to align the images. This sys-
tem makes an assumption that the transformation is a sim-
ple translation, and finds the best-fit translation to align the
edge pixels of the frame with the reference, assuming, as
the original paper does, that the background pixels are dom-
inant.

4.3. Decomposition

With the aligned images it becomes straightforward to
calculate the decomposition of a layer into the occlusion
and background components. We first take the average of
each layer in the focal stack. The backgrounds have been
registered so the occluding object is the only thing shift-
ing between frames. Then, for each frame, we compare the
intensity of the average pixel with the intensity of the input
pixel. If this difference in intensity is above a certain thresh-
old, we conclude that this pixel was occluded in the original
input, and assign it to the occlusion layer.

We also experimented with using a spatial coherence
metric rather than an average. Instead of taking the mean
of all values in the light field patch, we picked the pixel that
was most similar to the other pixels in it’s immediate neigh-
borhood. This, however, did not generate noticeably better
results.

With this process, we’ve obtained an occlusion mask
which identifies which pixels in the image are most likely
part of the occluding object.

5. Image completion
The input to the image completion stage of the occlu-

sion removal pipeline, then, is a focal stack with missing



pixels where the occlusion has been masked out. The sys-
tem must then use the existing data to in-paint, or complete,
these unknown portions of the scene. Two approaches were
implemented, with varying degrees of success.

5.1. Median image-based completion

The median image-based completion approach, intro-
duced by Yatziv and Levoy [10], involves first calculating
a median image for the light field then using this median
image to synthesize the unknown portions of the light field,
as shown in figure 3.

5.1.1 Median image and confidence

The median image itself is simply the median pixel within
each patch of the light field. There is a corresponding con-
fidence value, Ci ∈ [0, 1], for each pixel i in the median
image, which is based the number of unknown pixels in the
patch, as well as how similar the median pixel is to the other
known pixels.

Ci = Di ∗ Pri (1)

Di =
|UV |

U + V − 1
;Pri = 1−

∑
N (I(pi)− I(pM ))2

|UV | ∗ I2
max

2

(2)

Di is the percentage of known pixels over the total num-
ber of pixels (including occluded pixels). Pri is the simi-
larity of pixel pM , from the median image, with each pixel
pi in the set of neighbors N . U and V are the pixels along
the u and v directions in the light field, and |UV | is the set
of un-occluded pixels.

5.1.2 Synthesis

Using this median image, we perform patch-based texture
synthesis using the median as the source for texture patches,
rather than the individual focal stack layers. The patch-
based texture synthesis is fairly standard, iterating over the
neighborhood of each unknown pixel to find the most simi-
lar corresponding patch in the median image. The distance
formula used here is simply the sum of squared differences
over known pixels, ignoring values that have not yet been
synthesized.

The confidence is also factored in at this stage–rather
than performing the texture synthesis exclusively on un-
known pixels, we also perform it on pixels with a low con-
fidence value. The resulting synthesized pixel is added into
the image using a weighted average based on the confidence
value.

5.2. Focal stack propagation

We also experimented with a focal stack propagation
technique [2], which was similar to the median image com-
pletion. Rather than using the median image, though, this
technique first calculates an all-in-focus image, along with
a depth field. It then uses the all-in-focus image to per-
form the synthesis. As each patch is synthesized, the system
checks the depth field and applies a Gaussian blur kernel to
the synthesized portions of the image in order to appropri-
ately blend it with the existing portions of the scene.

6. Results

The results of occlusion detection and image completion
on the input light field can be seen in figure 6. The optical-
flow based occlusion detection was reasonably effective, as
it clearly masked the right regions within each layer of the
light field focal stack. However, in order to test the image
completion algorithm, we manually masked the input im-
ages and performed texture synthesis on that data in order
to more effectively visualize the results.

Figure 4: Depth, calculated from the input light field. The
result is not particularly accurate in this test case, as the
background of the scene is fairly uniform in terms of depth.

The focal stack propagation technique was not particu-
larly effective because the depth recovered from the light
field (figure 4) was very inconsistent. The median image
light field completion method was significantly more accu-
rate.

In general, the algorithm was able to recover a good deal
of detail, as can be seen in the spiral pattern on the pencil
holder and the letter ’A’ in the stack of blocks, which is
almost completely obscured in many of the input images.

Visually comparing the image to the results from Xue et
al (figure 5), we can see that the optical flow and iterative
optimization approach (left) achieves a cleaner final image,
with more details preserved. However, our approach has



Figure 5: Comparison between the image recovered from
Xue et al (left) and the image recovered from our system
(right).

fewer artifacts remaining from the occluder, and in general
allows for relaxed constraints on the input image sequence.

7. Future Work
While this pipeline produced very reasonable results for

occlusion removal, there are several areas where improve-
ment is necessary before this system can be of any practical
use.

7.1. Parallelization

The most crucial next step is some form of paralleliza-
tion or optimization. The texture synthesis stage of the cur-
rent algorithm is extremely slow, taking up to five minutes
to fully synthesize one image. The performance on a larger
data set, such as a full Lytro light field image, would be
almost too slow to utilize. Parallelizing the texture syn-
thesis could greatly improve the overall performance, and
optimization across the entire pipeline would certainly be
beneficial.

7.2. Optimization

The Obstruction-Free Photography [8] technique em-
ploys an iterative optimization in cycling back and forth
between the motion field and the decomposed background
and occlusion layers. Applying such an iterative process to
this pipeline, where the output of the median filter was used
as input into another cycle of obstruction detection and re-
moval, would probably benefit the accuracy of the final re-
sult. The current performance of the system is prohibitive,
but with a faster system one could run more iterations. As
the current system is fairly thorough, possibly only a few it-
erations would be required before a satisfactory final image
is generated.

7.3. Alternative approaches

Finally, there are several interesting alternatives to oc-
clusion detection that would be interesting to explore. Light
fields offer positional and depth information, in addition to
multiple views of the scene, and it would be interesting to

try and factor this information into a more accurate or faster
scene decomposition.

8. Conclusion
The light field occlusion removal system described in

this paper represents a full pipeline, from occlusion detec-
tion to image completion. It uses motion fields to detect
the occlusion, then applies texture synthesis techniques to
in-paint the missing image regions. The use of texture syn-
thesis techniques allows us to relax constraints on the input
images, permitting fewer images and larger occlusions.
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Figure 6: The input light field, consisting of five horizontally shifted images (left). The results of optical-flow based obstruc-
tion detection, with the obstruction masked out (center). The results of texture synthesis on the masked light field (right).


