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Abstract

Structure from motion is the most widely used princi-
ple for obtaining 3D scene information with a standard
monocular camera. In this report we present an explorative
project into a simple structure from motion processing sys-
tem using two-view geometry and keypoint matching. The
resulting system shows some promise, but remains quite un-
stable. We show some preliminary results and make a few
suggestions on useful improvements.

1. Introduction

In this project we seek to approach the problem of 3D
scene reconstruction with a simple solution that estimates
both structure and motion. An efficient system of this kind
is important in many respects, allowing machines to ex-
tract full geometric maps of unknown environments, and
also keep track of their own positions within that environ-
ment. One interesting application of this technology is in
autonomous robotics.

1.1. Related Work

Naturally, there has been much work on various solu-
tions to this problem. The use of specialized depth cameras
is one way to approach it, e.g. with light field cameras,
stereo sensors or time-of-flight cameras. Directly obtaining
depth information means that the 3D location of any im-
age point captured is more or less immediately identifiable
from each image - a big advantage. Most systems also make
use of inertial sensors to support their estimations of camera
pose changes. Finally, insights from multi-view geometry
and Structure from Motion (SfM) techniques are the com-
mon tool that is used to generate 3D scene information from
multiple images. Contemporary 3D mapping and localiza-
tion systems generally combine all three of these tools into
a single effective solution, for example as seen in Google’s
Project Tango devices.

In this project we focus on the latter of these three tech-

nological aspects of 3D reconstruction. 3D computer vision
is a well explored topic in sources such as [4], [6] and [5].
These works will serve as comprehensive sources for this
work.

1.2. Project Goal

With this premise, we now define our project goal to be
the exploratory implementation of a simple structure from
motion technique with a basic camera. The idea is find out
how viable this reduced approach is in comparison to the
high-end solutions mentioned above. We can expect our
system to be very efficient in terms of computation and
hardware required, so the interesting aspect is whether or
not the performance will be able to hold up. We hope to
gain some insight into the challenges that arise from this
problem, and thereby to allow future improvements and new
solutions.

2. Proposed Technique

Here we present the processing system that constitutes
our simple monocular approach. The theory is based on the
following geometric equation:

uixé = KRZ(X - ti) (1)

This formula describes the mapping of any 3D point X €
IR? onto a set of homogenous image coordinates z;, € R3 by
a camera with the intrinsic matrix K € R3%3, positioned at
the point ¢; € R? and oriented according to the rotation
matrix R; € R3*3. Note that u; is a positive scalar that
results from norming the third component of z; to 1. ¢; and
R; together form the camera pose, and we will refer to each
pair of these values as such.

With this relation between the image coordinates of 3D
points from different camera views, we have a clear formu-
lation of our goal. For a given set of images taken from dif-
ferent and unknown camera poses, our approach needs to
identify the poses representing the camera’s motion. This
part of the problem is known as visual odometry. Then we
need to find results for 3D points in the scene as well.



Our simple and fast approach considers two images at a
time and thus generates a sequential estimate of the pose:

Rign=Rip1,- Ry, tig1 =tig1s + 1 )
with Ry = I3,tp =0

This means we need to find a solution for estimating the

pose change R;;, t;; between two given images i and j.

2.1. Keypoint Detection and Matching

Our solution to this pairwise odometry problem is based
on the identification and matching of visual keypoints in the
image. We use the well-established SIFT (scale-invariant
feature transform) method to identify the image coordinates
of matching points x; and x;, which are both captured from
the same 3D point X. The method uses the concept of scale-
space in order to make its features scale-invariant, and the
feature descriptors are computed from the local gradients
present in the neighborhood around the keypoint. Before
the descriptor is extracted, the orientation of the keypoint
is also set to match the direction of the image gradient
in the point, meaning that the features are also rotation-
invariant. These properties make SIFT keypoints suitable
for our problem here. Refer to [2] for the original source
on the SIFT method. Figure 1 shows a test image with the
positions, scales and orientations of detected SIFT features.

Figure 1. Example image with SIFT keypoints identified and
marked.

2.2. Homography Estimation

The next part of our solution is to find a linear homog-
raphy transform between the image points of images j and
i:

J?; = H]ﬂ}; R Hji S R3%3 3)

The homography we use here can project the image i onto
the image j by introducing translation, rotation, rescaling
and perspective change. This yields the best results when
the images have a large planar surface, but it is a reasonable
approximation in most other cases as well. The homogra-
phy matrix has 8 degrees of freedom, meaning that a unique
solution can be computed from 4 point matches between
the two images. Provided that the environment has enough
SIFT-detectable features available, the number of keypoint
matches is generally far higher than 4. This large avail-
ability of information allows for statistical methods to be
used to increase robustness. This is done through the ran-
dom sample consensus (RANSAC) algorithm, which sam-
ples random groups of 4 keypoint matches and computes the
resulting homography. The quality of each randomly com-
puted homography is determined by the amount of match-
ing keypoint pairs that it correctly projects between the im-
ages - these are the inliers. The homography that produces
the most inliers is chosen as the best estimate, while the out-
liers of that homography are classified as false matches and
removed. This technique is well explained in the context of
panoramic stitching in [1].

Figure 2. Example image with SIFT keypoints identified and
marked.

2.3. Homography Decomposition

Since the homography describes a perspective change
between two views, it contains information on how the cam-
era’s pose was changed. To exploit this fact, we seek to de-
compose the identified homography matrix H; into a cam-
era pose change Rj;, tj;.

An analytical method proposed in [3] is used in this
project. In general, this method produces up to four unique
solutions, owing to the fact that a plane in perspective view
can be tilted in two directions along each of its two axes
while still producing the same top-down projection.

We can apply our triangulation method to all four of
these unique solutions and generate depth estimates for the
keypoints. This allows us to exclude solutions that result
in negative depths, which leaves two of the four solutions,
of which we can so far only guess one of them to use.
This introduces considerable unreliability into the sequen-



tial odometry process, especially since errors will propa-
gate. Figure 3 shows an example of the homography de-
composition, where we see the four possible solutions for
poses that realize the given homography transform.
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Figure 3. Example homography decomposition result. The central
cross and line marks image i’s position and orientation while the
four surrounding camera poses are the four possible solutions from
the homography decomposition.

2.4. Triangulation

Having identified two subsequent camera poses R;, t;
and R;, t;, we can now gain some sparse 3D scene infor-
mation from the identified inlier keypoint pairs. For each
inlier pair of matched image points x; and z; we look to
solve for the 3D point X by reforming (1):

X =wR 'K 2l +t; 4

Inserting the points and poses of both images i and j into (4)
and setting them equal yields:
wRTVK T +ty = wi R K+
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This is an overdetermined linear equation system, since two
lines in general do not have an intersection in 3D space.
However, an estimated solution is possible with a least
squares approximation:

ups = (ATA)71ATh (©6)

This approximate triangulation result can now be used to
identify the 3D point corresponding to each matched key-

point pair. Figure 4 illustrates how our solution deals with
the line intersection problem.
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Figure 4. Triangulation example for the matched keypoint pairs of
two images.

3. Implementation

In this short and exploratory study we prioritize conve-
nience in our test setup.

3.1. Camera and Calibration

The camera used in the project is an inexpensive Log-
itech C270 webcam as seen in 5. We set constant focus and
resolution and capture a set of pictures of a 9 by 7 checker-
board to calibrate the camera. We use the MatLab Camera
Calibration App to speed up the process as shown in figure
6. We include images from different depths and at differ-
ent skew angles, and we also make sure to use the camera’s
entire field of view over the calibration set. The result is a
complete estimate of the camera’s intrinsic parameters, in-
cluding lens distortion.

A feature of the camera to keep in mind is its small aper-
ture, so we make sure to use our system in daylight condi-
tion in order to allow shorter exposure times and suffer less
motion blur.

3.2. Software Libraries

We build our software system in MatLab, and use the
included image processing functions for the homography
estimation with RANSAC outlier rejection.

We also include the image processing library VLfeat,
which has good implementations of SIFT keypoint detec-
tion and matching.

Finally, we include the .mex build of OpenCV which can
be found under the name mexopencv. This library includes



of the resulting point cloud. We can see that point cloud
does reflect the location of the detected keypoint matches.

The mediocre performance of our current system means
that there is little sense in doing more detailed benchmarks.
We see that the sequential approach, lack of filtering and
uncertainty in the homography decomposition are crippling
problems that need to be addressed before any deeper eval-
uation makes sense.

Figure 5. The webcam we are using for our tests.
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Figure 6. The calibration app for estimating the camera parameters
from a set of images of checkerboard patterns.

a good implementation of the homography to pose decom-
position.

4. Experimental Results

We test our system on a set of ten images taken from
Stanford University’s Huang Engineering Center in bright
daylight conditions, producing the images shown in figure
7. The sequential odometry for all ten images produces the
camera poses seen in figure 8. We can see that the erratic
nature of the multiple solutions from the homography de-
composition disrupts what should be a straight line of cam-
era movement. This also ruins the results of the combined
triangulation from the entire image set.

We show an example of a two-view triangulation in the Having pointed out the main flaws of our approach in the
figures 9 and 10, displaying two different 3D perspectives previous section, we now seek solutions that could address
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Figure 7. Image test set taken while walking in a straight line.

5. Improvements and Future Work



0.5
0.45
0.4
0.35
0.3
0.25
0.2

0.15
0.1
0.05 &

0.05 0.1

Figure 8. Odometry result for the ten test images.

Figure 9. Reconstruction of the 3D positions of keypoints from the
first two images of our test set.

them. A promising way to make the algorithm more stable
from image to image would be to consider more than two
images at once. Matching keypoints from each image in
the group at the same time would allow us to look for a
combined solution for all relative camera poses in question.

One way of reaching the solution could be through us-
ing our homography decomposition to get all possible rel-
ative poses. We could then try all possible combinations
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Figure 10. A different view of the reconstruction of the 3D posi-
tions of keypoints from the first two images of our test set.

and choose the one that places all 3D keypoints at positive
depths relative to the camera poses (i.e. in front of the cam-
era).

Other than that, a state-of-the-art solution to the multiple
view structure from motion problem is bundle adjustment.
This method is based on finding a solution to the optimiza-
tion problem

. / 2
min i (u-a} — KRi(X — t;)) )
for all matched sets of keypoints z/,...,x],. A solution
to this problem is difficult but quite well explored - the
usual solution involves using the Levenberg-Marquardt Al-
gorithm which solves nonlinear damped LS optimization
problems. Our gained insights into homography decompo-
sition may still prove useful to use as initial conditions for
the bundle adjustment solutions.

Next, with the algorithm stabilized, we would want to
find a way to get more dense 3D reconstruction than we can
get from just the keypoints.

6. Conclusion

Although the time constraints and complexity of the
problem limited the results achieved in the scope of just this
problem, the insights gained do seem worthwhile. The re-
sults suggest that if the homography decomposition were
stabilized with one of the suggested methods, the odome-
try at least could reach a good quality. Generating dense
and accurate 3D scene maps would likely take a significant
amount of additional work with this system.



All in all however, the results can be seen in a positive
light. We have somewhat explored the possibilities of this
simple camera setup and validated our low-cost approach to
this high-end problem.
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