Hacking a Consumer DSLR Lens for Computational Imaging

Meredith Burkle, Ned Danyliw, Sam Girvin

Electrical Engineering, Stanford University

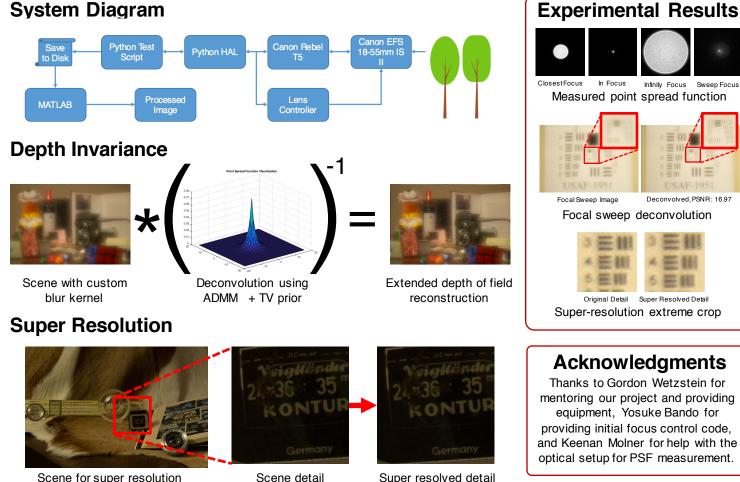
Motivation

With modification, it is possible to externally control conventional and nonconventional actuators in consumer DSLR lenses. This enables computational imaging techniques possible with everyday hardware.

Project Description

Hardware:

Remote control of focus, lateral movement of the image stabilization element, and all camera settings.


Software:

Python script for programmatically controlling all aspects of exposure. Demonstration of depth invariant capture, light field, and super resolution techniques.

Related Work

Focal sweep techniques with DSLRs were demonstrated by Bando, et al. in [1] and [2].

Repurposing the image stabilization system for lateral movement was shown by McClosckey, et al. in [3].

Experimental Results In Focus ClosestFocus Infinity Focus Sweep Focus Measured point spread function Deconvolved, PSNR: 16.97 Focal Sweep Image Focal sweep deconvolution Original Detail Super Resolved Detail Super-resolution extreme crop **Acknowledgments** Thanks to Gordon Wetzstein for mentoring our project and providing equipment, Yosuke Bando for

providing initial focus control code,

optical setup for PSF measurement.

[1] Y. Bando, et al. "Near-invariant blur for depth and 2D motion via time-varying light field analysis." ACM Trans. Graph. 32, 2013. [2] Y. Bando, "An Analysis of Focus Sweep for Improved 2D Motion Invariance," 2013 IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR, 2013. [3] S. McCloskey, et al. "Motion invariance and custom blur from lens motion," 2011 IEEE Int'l Conf. on Computational Photography (ICCP), Pittsburgh, PA, 2011, pp. 1-8.