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Abstract

This project involves the implementation of multiple de-
noising algorithms on images created using a Light Field
Moment Imaging (LMI) approach. LMI allows for a shift
in perspective using two images captured through a single
lens, but suffers from color cast created during the required
mathematical approximations. This paper proposes the use
of several denoising filters to remove the noise prior to con-
struction of the photo. Quantifying the ability of each de-
noising filter will be done through the use of PSNR, compu-
tation time, and gauge of overall image quality.

1. Introduction

Developed by Orth and Crozier in 2012, LMI provides a
method of mimicking depth and perspective through a sin-
gle lens by simulating the light field mathematically using
two captured images taken slightly out of focus from one
another, with a focal plane difference (∆z) typically on the
order of µm. In its current state, LMI provides intriguing
results that have already found use in multiple microscopy
applications. However, the method remains somewhat in its
infancy. In the introductory paper [1], Orth states that fur-
ther research should be conducted on the Gaussian distri-
bution assumption used in developing the light field matrix.
In addition and most importantly for this paper, high levels
of noise are present in the extracted photos that can cause a
significant color shift, as shown in Fig. 1. At a low enough
value of ∆z, this noise can bury the signal, as shown in
Fig. 2. This project seeks to implement a noise reduction in
the frequency domain that will improve color reproduction
while minimizing the effects of denoising on the apparent
perspective shift.

(a) Original image with normal
levels of additive noise.

(b) Derived image showing se-
vere color cast due to noise.

Figure 1: Original and LMI derived images showing differ-
ences in noise level.

Figure 2: Extremely low PSNR (5.12 dB) resulting in near
complete masking of underlying image, ∆z = 0.2 µm

2. Background

2.1. LMI

LMI utilizes an approximation of the light field within
a scene to provide simulated perspective shifting. By de-
termining the angular moments of each ray, an approxima-
tion of the scene at a given angle θ can be made math-



ematically. A full derivation of the mathematical system
is presented in the report [1], but a brief overview will be
given here in order to provide some insight into the noise
reduction algorithm. The foundation of LMI is based on
the parameterization of the light field within a given scene.
Here, Orth represents the density of rays at a given point
as L̄(x,y,z,tanθX ,tanθY ). A simple assumption about the
physics of light at a given point and some mathematical ma-
nipulation yields a Poisson equation:

∂I(x, y; z)

∂z
= −∇2

⊥U(x, y; z) (1)

Where U(x, y; z) is defined as the scalar potential of the
light field. This equation is solved in Fourier space, imple-
mented in the form of a filter H:

H(fx, fy) = [−4π2(f2x + f2y )]−1

for (f2x + f2y ) 6= 0
(2)

H(fx, fy) = 1 for (f2x + f2y ) = 0 (3)

U = F−1[H ×F{(I1 − I2)/∆z}] (4)

Where fx and fy are the spatial frequencies in the x and
y-directions, respectively. Here, the derivative is approxi-
mated by operating under the assumption that ∆z is a very
small value (typically on the order of µm). While this ap-
proximation works well for perspective shifting, it allows
for noise to be amplified in a manner similar to that seen in
inverse filtering and deconvolution: a small value in the de-
nominator results in a large amplification of the signal. Ul-
timately, the amplified noise presents itself as a color shift
in the low spatial frequency areas of the final photo. As the
value of ∆z decreases, the noise can completely overwhelm
the signal, resulting in effects such as that shown in Fig. 2.

2.2. Filtering

In order to minimize noise in the final image, this project
proposes a noise reduction algorithm applied to the image
difference matrix J , derived from Eq. 4:

J = F−1{H ×F{(I1 − I2)}} (5)

Which can then be applied to Eq. 4 in lieu of the I1/I2
difference equation:

U = F−1[H ×F{J/∆z}] (6)

At this point, ∆z is applied, but is not as effective in
noise amplification due to reduction by the algorithm.

This method of noise reduction poses some inherent
problems. First, since the noise doesn’t manifest in the spa-
tial domain as the high frequency “speckling” typical of a

normal distribution, clean up in the spatial domain proves
difficult as a typical measure, compute, and adjust filter will
likely prove ineffective. As such, filtering will take place in
the frequency domain where it can be assumed that noise
manifests itself in both the low and high frequency portions
of the spectrum, relatively separate from the majority of the
underlying image. Second, overfiltering of the difference
matrix can result in a near-zero gradient matrix being ex-
tracted. When this occurs, no perspective shifting will occur
and the PSNR will approach infinity, i.e. the output photo
will perfectly match the input photo I2. With these com-
plications, filtering in this application has to be a balance
between computation time, PSNR, and image quality.

While the filtering algorithm is going to take place
wholly in Fourier space, the filters themselves will be cre-
ated in the spatial domain. By taking a 2D FFT of the im-
age and shifting low frequencies toward the center of the
matrix, a spatial bandpass filter (BPF) can be configured
and applied to remove high frequency noise (speckling) to-
ward the edges of the transformed image and low frequency
noise (color shifting) concentrated at the center. In order to
experiment with the maintenance of simplicity and reduc-
tion of the required computation time, three of the imple-
mented filters will be an ideal BPF, a Gaussian BPF, and
a Butterworth BPF. The ideal BPF manifests itself as two
simple circles imposed on a black background. At specific
radii, the circles will attenuate both low spatial frequency
data and high spatial frequency data located in the corners
of the FFT. Gaussian filters are rare in signal processing,
but find use in image processing due to their ability to sim-
ulate natural blurring effects. This will not be as critical in
the frequency domain as it would be in the spatial domain,
but the filter’s simplicity and minimal computation tax war-
ranted some experimentation. While similar in nature to
the Gaussian BPF, the Butterworth filter allows for a flat-
ter frequency response in the more critical low frequency
passband which will constitute a large portion of the image,
resulting in higher image integrity.

The fourth and final filter will be an implementation of
Frequency Domain Wiener Filtering (FDWF) [2]. While
Wiener filtering in general is suited for inverse deconvolu-
tion and typically finds use in the spatial domain, this partic-
ular algorithm is well suited for this task due to its adaptive
nature. To avoid amplification of noise, approximations of
the noise level are made prior to masking and filtering of
the primary image. Additionally, in order to reduce the re-
quired computation time, the image is broken up into zones
rather than relying on a pixel-by-pixel computation. The
algorithm is purported to be highly effective in noise reduc-
tion while maintaining the integrity of edge details and fine
textures.



3. Methods and Procedures

Due to the relationship between the perspective shifting
and the PSNR of the resulting photo, PSNR was considered
to be of little use for a definitive assessment of filter qual-
ity. However, by attempting to set the PSNR the same in
all filters and comparing other characteristics such as com-
putation time and image quality, a solid quantitative anal-
ysis of each filter type can be performed. To perform just
this, the filter sigmas, cutoff frequencies, window sizes, and
other parameters were adjusted and run until the PSNRs of
each closely matched each other. This method caused a few
issues, which will be discussed in detail in the results sec-
tion. The PSNR was chosen as a moderate improvement
that removed the color shift, but still maintained the per-
spective shifting algorithm. This also allowed inspection
for artifacts such as ringing that is present in the FDWF at
high β (division factor) levels. Through experimentation,
a PSNR of 26.0 dB was found to be a good compromise
when looking at the aforementioned characteristics. When
discussing each filter, this value will be the one sought after
when developing the filtered images and will be responsible
for driving each filter’s parameters.

It was noticed during the filter development process that
the color cast could be removed, but with the side effect
of an excessive amount of noise in the blue channel that
revealed itself in the low spatial frequency regions of the
image. It is believed that this noise is due to lower spatial
frequency pixel pairs in the blue channel that are slightly
higher in magnitude than seen in the red and green chan-
nels. This would push them just outside of the blocked zero
frequency area in the middle. To account for this, each fil-
ter was given a higher window value for the blue channel
than for the others. The listed values for the low frequency
portion of the filter will correspond to the values used in the
green and red channels.

3.1. Ideal BPF

The ideal bandpass filter is a simple design that is im-
plemented by placing two circles in the middle of a matrix
sized the same as the image to be filtered. Though basic in
nature, the parameter (specifically the circle radii) proved to
be incredibly difficult to control for and made for poor re-
sults, which will be discussed in detail later. Figure 3 shows
the spatial representation of the filter. Note that the vast ma-
jority of the image is completely unattenuated while only a
small section of the corners and center receive any treatment
from the filter. In order to provide a PSNR approximating
26.0 dB, filter radii of 395 pixels (outside) and 1.6 pixels
(inside) were used.

Figure 3: Ideal filter, 640x480

Figure 4: Gaussian filter, 640x480

3.2. Gaussian Filter

Gaussian filters find use in spatial image processing, es-
pecially when a natural blurring effect is sought in an image.
They have very little application to spatial denoising appli-
cations, but work well as bandpass filters in the frequency
domain, which is why the method was chosen as a starting
point. Construction of the Gaussian filter is simple, requir-
ing only a filter size and standard deviation (σ). In order
to achieve the required PSNR of approximately 26.0 dB, σ
values of 2.2 and 200 were found to work well. A spatial
representation of the Gaussian filter is shown in Fig. 4.

3.3. Butterworth Filter

The Butterworth filter finds frequent use in signal pro-
cessing due to its optimal flat response in the passband.
This is ideal for a bandpass filter application as it would



Figure 5: Butterworth filter, 640x480

be preferable to maintain as much of the low frequency sig-
nal information as possible since this is where the major-
ity of the image lies. A downside of the Butterworth filter
is its increased computation time over the simpler Gaus-
sian distribution. Figure 5 shows the spatial representation
of the Butterworth filter. It’s immediately evident that the
Butterworth filter provides an extremely flat response in the
passband area where the majority of the image will be con-
centrated in Fourier space. There is a harder cutoff toward
the higher frequency corners and immediate center, where a
significant portion of the noise is located. This is far differ-
ent from the constant gradient nature of the Gaussian filter
and will likely provide a better representation of low spa-
tial frequency areas in the final image. Design of the But-
terworth filter’s characteristics required a balance between
PSNR, computation time, and proper shaping of the transi-
tion band. Too hard a cutoff is not necessarily a wanted fea-
ture, as will be discussed in the ideal LPF results. However,
a 6th order filter showed a substantial reduction in noise
and preservation of fine details within the image. To reach
a PSNR of 26.0, the cutoffs were found to be 1.5 and 300
pixels.

3.4. Frequency Domain Wiener Filter

Application of the FDWF proved to be more complicated
than the other three filters. The FDWF filter operates on
the assumption that noise is heavily concentrated in the cor-
ners of an image in Fourier space, which makes sense for
most applications. However, here there is an assumption
that there is noise concentrated both in the high and low
spatial frequencies. In order to get the filter to operate un-
der this assumption, two FFTs were performed: one shifted
with the low spatial frequencies at the center of the image,
and another unshifted with the low frequencies concentrated
in the corners. These two images were then combined to

Figure 6: FDWF filter, 640x480

form an FDWF bandpass filter, whose spatial representation
is shown in Fig. 6. Dividing factors of 2 and 5 were found
to provide a good balance in the wanted characteristics.

One benefit to this filter is the omission of the blue chan-
nel noise compensation that was used in previous designs.
The algorithm is able to detect and eliminate this noise in
the channel without the need for adjustment of the dividing
factor value, β.

4. Results
As the perspective is shifted, the PSNR between the

shifted image and the original image understandably de-
creases. At an angle of -0.0616 radians, the maximum
PSNR while maintaining perspective shifting is approxi-
mately 32 dB. With no noise filtering in place and the value
of ∆z fixed, the minimum PSNR is approximately 19 dB.
Approximately halfway between these two values is 26 dB,
the value chosen to gauge filter effectiveness. This was done
to ensure that noise reduction was implemented without
completely removing or heavily attenuating the intended
perspective shifting. Because PSNR cannot be used as a de-
cisive quantification method, computation time and the ad-
mittedly subjective image quality comparison must be used.
The original image, available for comparison, is provided in
Fig. 7. The noisy image is shown in Fig. 8. To create this
noise, a ∆z value of 1.5 µm was used. Both images depict
the RF input of an ASIC produced by Keysight Technolo-
gies.

4.1. Ideal BPF

The ideal BPF, with image shown in Fig. 9, was im-
plemented using the parameters found in the Methods and
Procedures section. While the green color cast has been re-
duced, immediately noticeable is further induced color cast



Figure 7: Original image used for PSNR comparison,
640x480

Figure 8: Derived image showing color cast due to noise.

near the center of the image, in addition to noise in the blue
and red channels in low spatial frequency areas surrounding
the center structure. Noise is also evident on the gold layer
toward the top of the image, which gives the appearance of
a more textured structure than actually exists there. Some
green can still be seen around the structures on the left and
right sides of the image. Additionally, adjustment of this
filter proved difficult. Fine adjustment to remove noise re-
quired the use of non-integer values, something unique to
this filter. Minute changes on the scale of 10−1 resulted in
substantial differences in the filter output. Removal of noise
in the red and blue channels resulted in a significant jump
in the PSNR, but a reduction or complete elimination of the
perspective shift.

PSNR Computation Time
26.87 dB 0.09 s

Figure 9: Ideal BPF applied to image, 640x480

Figure 10: Gaussian BPF applied to image, 640x480

4.2. Gaussian Filter

The Gaussian filter, shown in Fig. 10, fared better than
the ideal BPF. The green color cast has been reduced to a
minimal level, with some still visible in the low spatial fre-
quency areas surrounding structures. As with the ideal BPF,
some level of noise has been introduced which gives an il-
lusion of an enhancement to sharpness or a change in tex-
ture. Despite the uneven attenuation in the passband that
the Gaussian filter provides, there appears to be only a min-
imal loss of detail in critical areas. An example of this is the
solder ball in the middle of the photo, whose features have
been slightly muted by the filter.

PSNR Computation Time
26.42 dB 0.13 s



Figure 11: Butterworth BPF applied to image, 640x480

4.3. Butterworth Filter

The Butterworth filter, shown in Fig. 11, appears similar
in nature to the Gaussian filter, but has some critical differ-
ences. The green color cast has been reduced, but not to the
same level provided by the Gaussian filter. However, the
Butterworth filter has done a better job of maintaining de-
tails, such as on the solder ball in the center of the photo.
Unfortunately, it seems to have enhanced some features,
such as the imperfections on the gold trace just below the
solder ball. While these show up accurately in the origi-
nal photo, they look washed out in the filtered image. The
substrate features seem neither enhanced nor muted from
the Gaussian filter. Given the computation time involved, it
actually appears the Gaussian filter provides a more true-to-
form result.

PSNR Computation Time
26.40 dB 0.85 s

4.4. Frequency Domain Wiener Filter

The FDWF, shown in Fig. 12, appears at first glance to
be the best representative of the original photo. The green
color cast has been reduced to a minimum and there doesn’t
appear to be a notable level of noise or induced casting. De-
tails are maintained in most of the image, with a small level
of blurring expected when high frequency components are
removed. When comparing this and previous images to the
original, contrast appears to have suffered slightly from the
original, as has brightness. Both of these issues are cor-
rectable in post processing and should not be considered
problematic. Computation time of this filter is half of what
was required for the Butterworth filter. This includes the ex-
tra FFT derivation and multiple calls to the filter function,
making the required time even more impressive.

Figure 12: Bandpass FDWF applied to image, 640x480

PSNR Computation Time
26.75 dB 0.46 s

4.5. Overall Results

In reviewing the results for each filter type, it’s readily
apparent that there are some critical differences in the filter
outputs. Overall, the FDWF appeared to provide the high-
est attenuation of the color cast while remaining true to the
original photo in terms of color and details. The FDWF did
not experience any extraneous noise or color casting that
was associated with the three previously discussed filters.
Coming in close second is the Gaussian filter, which does
a surprisingly decent job of maintaining the critical details
of the image (with some level of blurring to fine detail), but
suffers from an excess level of residual color cast.

5. Conclusion
In this project, a method for denoising LMI images was

developed and four different filter types implemented, in-
cluding the ideal BPF, Gaussian BPF, Butterworth BPF, and
a modified bandpass FDWF. All filters showed themselves
to be effective, with some providing a higher image qual-
ity than others. Specifically, the ideal BPF induced a no-
table color cast after reducing the cast created by the im-
plementation of LMI while the Gaussian filter displayed a
minor color cast but overall excellent quality in terms of im-
age details. The Butterworth filter showed minimization of
the color cast and preserved more details than the Gaussian
filter, but didn’t have the same level of attenuation as the
Gaussian. Finally, the FDWF displayed an extremely high
quality photo with preserved details and no notable color
cast over what the LMI algorithm produces.

This project has shown that through the use of simple fil-
tering algorithms, noise reduction in LMI applications can



be performed with minimal use of computation time or sac-
rifice of image quality. This report has shown only a small
sample of bandpass filters used in a signal processing appli-
cation. Research into other filtering algorithms is warranted
to determine which is best in terms of computation time and
image quality.
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