
Object/Defect Removal via Single-image Super-resolution on
NLM-priority-based Inpainting and Sparse Coding

Haihong Li
Stanford University
hhli@stanford.edu

Joanna Xu
Stanford University
xuhan@stanford.edu

Chen Zhu
Stanford University

chen0908@stanford.edu

Abstract

Object removal is a topic highly involved in a wide range
of image reconstruction applications such as restoration of
corrupted or defected images, scene reconstruction, and
film post-production. In recent years, there have been many
efforts in the industry and academia to develop better algo-
rithms for this subject. This paper discusses some of the re-
cent work and various techniques currently adopted in this
field and presents our algorithmic design that enhance the
existing pixel-filling framework, and our post-inpaint refine-
ment steps. This paper will further layout the implementa-
tion details and experimental results of our algorithm, on
a mixture of images from both the standard image process-
ing study papers and our own photo library. Results from
our proposed methods will be evaluated and compared to
the previous works in academia and other state-of-the-art
approaches, with elaboration on the advantages and disad-
vantages. This paper will conclude with discussing some
of the challenges encountered during the design and exper-
iment phases and proposing potential steps to take in the
future.

1. Introduction
1.1. Motivation

In the world of photography, a perfect shot can be at-
tributed to aesthetics factors such as scene composition and
artist’s vision, as well as technical standard such as lens
capabilities and sensor resolution. However, an image can
still occasionally be flawed by random intruders or undesir-
able objects that are unexpectedly presented in the scene.
There are also scenarios where we wish to preserve the
quality of worn-out old photographs, which may have de-
bris, fold marks, or scratched surface. Both cases require a
post-processing method to restore the desired image qual-
ity, which can be realized through computational imaging
techniques such as inpainting, texture synthesis, and sparse
coding.

1.2. Objective

The goal of this project is the design and implementa-
tion of advanced object removal algorithms applicable for
distinct object removal and small-scale defect removal. We
investigated existing methods and proposed our own ad-
vanced algorithmic design that can be categorized into two
distinct image patterns. Our designs are to cover the appli-
cations on both the distinct object removal from an image as
well as reconstruction of scratched or defected image. We
aim to improve the quality of the output image in terms of
both visual coherency and the preservation of details.

The algorithms will be implemented through MATLAB
software. We experimented with images from both the stan-
dard imaging-related academic papers as well as those from
our own photo libraries with different resolutions to en-
hance the variety of our test pool.

2. Related Work

There has been recent development of image reconstruc-
tion algorithms in the past 20 years that pay particular atten-
tion to the topic of object removal. Existing methodologies
generally fall into the two categories: texture synthesis and
inpainting.

The core of the texture synthesis and image quilting
method is the generation of a new larger image, from syn-
thesis and stitching together small patches of the existing
image. This method was originated from Ashikhmin’s 2001
paper, and improved by Dr. Freeman, which places ran-
dom blocks of the original image and construct neighboring
blocks constraining by overlap and minimizing error bound-
ary cut.[1] It can be viewed as a heuristic approach that uti-
lize the repetition of two-dimensional textural patterns to
edge-stitch the missing cut-out zone. It seeks to replicate
texture with moderate stochasticity to fill in the missing pix-
els. This method works particularly well for images with
repetitive or periodic texture patterns, such as wood grain,
grass, snow, and fruit piles. However, this method’s per-
formance is highly constrained to the pattern of the target

image being reconstructed. For images with irregular scene
composition or texture patterns, this method would result in
artifacts and incoherency.

Another commonly-referred technique is ”inpainting”,
which targets the pixel filling after a single-object removal
from an image. This method highlights the process of tak-
ing other patterns/contours/edges near the cut-out edge re-
gion, and extending the pattern to fill the object-removed
zone. Early elaboration on this method was seen in Dr.
Marcelo Bertalmo and his colleagues’ proposed algorithm
based on fluid dynamics and the use of partial differential
equations. This algorithm simulates a traversal along the
edges from known regions to the unknowns. As edges of
objects are meant to be contiguous, we may continue the
isophotes while matching gradient vectors at the boundary
of the targeted inpainting region (with reference to meth-
ods used in fluid dynamics). Once the contours are recon-
structed, colors can be filled to reduce minimum variance in
that region.[4]

An extension to this method was seen 2003 paper by Cri-
minisi, Perez, and Toyama from Microsoft research, whom
proposed the ”Exemplar-based ” inpainting technique that
uses the extension of isophotes, or linear structures of the
image patter to fill inward. The paper presents the ”best-
first” algorithm, with idea that the order of filling matters
and should prioritize the pixels located more towards the
known region.[3] Another similar method was proposed by
Alexandru Talea in 2004, and is based on a mathematical
model - the Fast Marching Method. The algorithm starts
from the exterior of the to-be-inpainted cut-out zone and
graduates towards the interior, crossing through the bound-
ary edge, and fill the region along the way. Each pixel in the
inpainting zone is filled with a normalized weighted sum
of the known pixels in its neighborhood. Pixels locating
near the targeted inpaint pixel are given more weight, and
so are the pixels near the normal of the boundary and lying
on the boundary contours.[2] Such filling method takes into
consideration every direction from the center of the cut-out
zone, producing a relatively coherent visual effect on the
cut-out zone.

A newer conference paper from European Conference on
Computer Vision suggests that combining super-resolution
with the Perez’s exemplar-based inpainting is viable. Au-
thors Le Meur and Guillemot proposed that applying in-
painting on coarse or low-resolution version of the image
would help reducing computational complexity and reduce
sensitivity to noise.[8] We believe this points us to an inter-
esting path to explore on.

Sparse representation of signals has received grow-
ing interests in academiain recent years. The intuition
behind this is to simulate human visual coding process
computationally[20]. The idea of sparse coding is to rep-

resent a signal x ∈ RN with as few coefficients as possible
based on an over-complete dictionary D ∈ RN×k. We call
each column in D an atom, and since D is an over-complete
dictionary, k > N . The above idea can be modeled as an
optimization problem as follows[18].

min‖Dα− x‖2, s.t.‖α‖0 ≤ L

where ‖ · ‖p denotes lp-norm of a signal, D ∈ RN×k(k ≥
N) is the overcomplete dictionary, α is the coefficient
vector.

3. Methodology

This section provides details of the two categories of
approaches we explored: 1. distinct object removal with
single-image super-resolution on priority-based image in-
painting 2. sparse coding for reconstructing image with
small-scaled defects or noises.

3.1. Single-Object Removal

Fig. 1 on the next page shows the algorithmic flow of
our improved single-object removal pipeline combining the
super-resolution with NLM-priority based inpaint and un-
sharp masking.

3.1.1 Single-image Super-resolution

Before processing the inpainting part of the object removal,
down-sampling is performed on the image. Allowing in-
paint function to work over the down-sampled image re-
duces computational complexity. More importantly, the
down-sampling step retains the dominant structures and
edges of the original image while lowering the focus on
sparse regions or noises. It helps filtering out the noise dur-
ing the inpaint process, improving the quality of the output
from super-resolution and enhancing the algorithm’s robust-
ness.

After the inpainting stage, a single-image super-
resolution step needs to be taken to restore the image to
its original resolution. There are various sophisticated al-
gorithms in previous scholarly articles, such as the opti-
mization process in Glasner’s 2009 paper, that touches upon
this process.[15] However, after evaluating the complexity-
performance trade-off, we decided to employ the classic
bicubic interpolation for low-high resolution transforma-
tion.

1unsharp masking image from Wikipedia ”unsharp masking” main-
page; bicubic image: https://software.intel.com/sites/
default/files/did_feeds_images/

Figure 1. Algorithmic flow of the Single-image Super-Resolution with NLM-priority based inpainting.1

3.1.2 Priority-based Inpaint with Non-Local-Means
and L2-norm

At the inpainting stage, the Laplacian-based edge detection
method takes in the input image and the mask to compute
for the boundary of the removed area, which we call the
”fill-front”. Once we obtain the set of pixels at the fill-
front, we need to determine which pixel to be filled first.
The order of filling is extremely crucial in the algorithm
because as we graduate inwards, the inner pixels will be
dependent on the previously filed outer pixels. The naive
method would be to simply build along the edge in a circular
manner. However, this circular order can possibly risk im-
age coherency because the gradient or sparsity of the image
in the source region can vary along the boundary, and those
regions with dense details are not given enough emphasis.
Therefore based on the existing isophote or PDE-based in-
painting method, we designed a more advanced version of
inpainting algorithm that utilize the Non-Local-Mean tech-
nique and L2-norm in determining the pixel filling order.

During the iteration of pixel filling, the order (or prior-
ity Pij) of the filling is determined by the product of two
terms: the confidence term Cij and the similarity term Sij .
The confidence term tells us how much the current pixel lies
within the source region, or the weighted ratio of the known
region (represented as 1) to unknown region (represented as
0).[3] The similarity term is computed based on the Non-
Local-Means method, showing how similar the pixel win-
dow is to the surrounding source regions within a defined
search range. This method is critical and effective because
from a coherency point of view, the more similar this cur-
rent pixel window is to its surrounding area, the earlier this
pixel should be filled in order to preserve the regional pat-
tern in this portion of the image, and the more likely this
pixel can be filled with optimal patch from the surrounding
area.

Thus for each pixel to be filled, we compute their priority
as follow:

Pij = Cij ∗ Sij

where,

Cij =
Σmn∈Ψij∩(I−Ω)Cmn

|Ψij |

Sij = ‖ 1

Z(i)
exp−

Σmn(kmnv((Ni)mn−(Nj)mn))22
h2 ‖2

Z(i) = Σj exp−
‖v(Ni)−v(Ni)‖22,a

h2

For each filling stage, the pixel with highest prior-
ity will be filled by the most similar patch Ψq in the
known region.[3] Specifically, a patch in the known re-
gion Ψ is deemed ”the most similar” to the target pixel’s
patch Ψp if the mean square difference between the two
is the smallest. Formally it can be expressed as Ψq =
arg minΨq̂∈Ψ MSE(Ψq̂,Ψp), where MSE(·, ·) denotes the
average of squared differences of pixel values in two
patches. After finding the min-difference patch Ψq, then
each unknown pixel in patch Ψp assumes the pixel value
of the pixel at the corresponding position in that min-
difference patch.

3.1.3 Unsharp Masking

The post-SR image has retained the same resolution as
the pre-processed image, however, we added another post-
processing step to sharpen the image. We apply unsharp
masking to the resulting image after interpolation for ren-
dering. Unsharp masking is a image sharpening process
where low-frequency components are weakened and high-
frequency are strengthened. Formally, the process can be
written as b = F−1(F (x)−F (x) ·F (c)), where c is a low-
pass Gaussian kernel, x is the input image, b is the resulting
image, and operator F , F−1 denote Fourier transform and
its inverse. This additional step contributes in highlighting
the details of the post-SR image.

3.2. Scratch/Defect Removal: Sparse Coding

3.2.1 Pursuit Algorithm

The described optimization problem is a NP-hard problem.
Thus only approximation methods are allowed to solve
this problem. The simplest way is to use greedy algorithm
to approximate satisfying results. Matching pursuit and
orthogonal matching pursuit[17] are two of the most rep-
resentative algorithms. The idea is to project each atom to
the current residual vector and find the atom that maximize
the inner product with the residual, until the residual satisfy
the stopping criterion or the sparse representation vector α
reaches the sparsity restrictions.

Algorithm 1 Matching Pursuit
Input: Signal y ∈ RN , dictionary D ∈ RN×k

Output: Coefficient vector α ∈ Rk

Initialization:
res1 = y
n = 1
REPEAT UNTIL CONVERGE:
- find dk ∈ D with maximum inner product:
| < dk, resn > |
- an = <dk,resn>

‖dk‖2

-resn+1 = resn − andk
- n = n +1

Algorithm 2 Orthogonal Matching Pursuit
Input:
Signal: y ∈ RN

Dictionary: D ∈ RN×k

L: sparsity constraint Output: Coefficient vector α ∈ Rk

Initialization: r0 = y
REPEAT UNTIL CONVERGE:
- p = DT rk−1

- lk: add to list index where column |p|i is maximum
- Dk: atoms from D which have entries in lk
- xk ← argminx‖y −Dx‖
-rk = y −Dkxk

A more complex method is basis pursuit, where we relax
the l0 norm to l1 norm as follows.

min‖Dα− x‖2, s.t.‖α‖1 ≤ ε

Then we can solve this problem using augmented lagrange
multipliers.

3.2.2 Choosing a dictionary

In this optimization problem, D and A are both unknown,
which leads to another challenge: finding the right dictio-
nary that yield the sparsest A. An easy way to do this is to
choose a pre-defined dictionary. In some cases, it leads to
fast and efficient implementation. Discrete cosine transform
(DCT) , wavelets, curvelets, short-time Fourier transform
etc. are usually used as described in literature[14].

However, these dictionaries don’t perform equally well
in all situations. Their performance depends on how well
they suit the sparse representation of the signals in a specific
problem. Another choice is to learn a dictionary that suits
the specific problem better. One of the methods of learning
a dictionary is called K-svd, which is a generalization of
k-means. The algorithm is described in Algorithm 3[14].

Algorithm 3 K-SVD
Input: Y ∈ Rn×p: each column in Y represent a training
sample randomly chosen from the training set
Output: D ∈ RN×k: a learned dictionary with k atoms
Initialization: set D with k normalized columns, iter = 0

REPEAT UNTIL CONVERGE:

• Sparse Coding Stage:
Use any pursuit algorithm to compute the representa-
tion vectors in A column by column.

• Update dictionary Stage:
FOR EACH COLUMN IN D
- Define the group of example that use this atom, ωk =
i, 1 ≤ i ≤ N, xkT 6= 0
- Compute the overall error matrix Ek,

Ek = Y −
∑
j 6=k

djx
j
T

- Restrict Ek by choosing only the columns corre-
sponding to ωk and obtain ER

k

- Compute SVD of ER
k and obtain ER

k = UΣV T .
Update current column in dictionary D with the first
column of U. Update the coefficient vector xkR with
Σ(1, 1)V (:, 1)

We call this algorithm K-SVD since it’s a generalization
of k-means. In k-means, we represent the data with only one
representative centroid in the data set, while in this case, we
are allowed to used several atoms to represent signals under
sparsity restrictions. Using this method, we can obtain a
dictionary that suit specific signals better compared to pre-
defined dictionaries. After we find the dictionary, we can

solve the optimization problem using any pursuit algorithm
described in the previous section.

3.2.3 Implementation Details

Here we further elaborates on some of the implementation
details for the sparse coding method.
For efficiency, we split our training images and degraded
images into patches and deal with one patch at a time. This
can be modeled as follows.

minD,A

p∑
j=1

‖Dαj − yj‖22, s.t.∀‖αj‖00 ≤ L

where Y = (y1, y2, · · · , yp), yj ∈ RN are p patches
split from the image after vectorizing, D ∈ RN×k is
the dictionary with k being the number of atom, A =
(α1, α2, · · · , αp)is the sparse representation matrix with
each column αj ∈ Rk being the sparse representation of
signal yj .

• Training a dictionary
To train a dictionary, we use 4 images with human
faces from USCimages[11]. Note that the lena image
was removed from the training set. We first split tran-
ing images into p 16× 16patches, then vectorize each
patches into p 256 × 1vectors and use these vector to
form our signal matrix Y ∈ RN×p. After that we ap-
ply column by column kSVD to Y and obtain a trained
dictionary.

• Recover the image
Similarly, we split our degraded images and mask into
several patches of 16× 16, vectorize each patches and
form the signal matrix Y. Then we can use any pursuit
algorithm to obtain its sparse representation matrix A.
Note that only pixels in non-degraded areas are calcu-
lated in this stage. For this problem, we find that OMP
is more efficient and easier to converge, so we use
OMP both in training stage and reconstruction stage.
We test the performance of both pre-defined dictionary
and learned dictionary.

4. Results and Analysis
4.1. Experimental Setup

In order to examine the robustness of our design, we in-
corporated not only the standard image from image-study
scholarly articles, but also photos captured with our own
commercial digial cameras. The images under test are of
different resolutions and color patterns, which largely en-
hance the variety of our test pool.

The input masks are customized for each image based on
the targeted object to be removed and hand-cropped with
paint. The masks are in RGB format, with 0 represent-
ing known region and 1 representing unknown region in all
three channels.

4.2. NLM-priority-based Inpainting

To evaluate the performance of our NLM-priority-based
inpainting method, we experimented with two images:
the bungee image commonly used in image-reconstruction
literatures, and the air balloons taken with our com-
mercial Sony digital camera. Fig. 2 shows the origi-
nal ”bungee”/”balloon” images with their corresponding
masks, and the resulting images computed from both
Perez’s method and our NLM method. Fig. 3 shows the
priority terms. The confidence plot’s yellow represents de-
gree of known and blue represents degree of unknown; The
similarity plot presents the darker (more blue) region as the
region which bears lower NLM weights.

Figure 2. a) original img, b) mask, c) Perez’s method, d) NLM.

Figure 3. a) Perez’s confidence plot, b) NLM’s confidence plot, c)
NLM’s similarity plot.

From the image in Fig. 2 it can be noted that (1) In the
bungee image, Perez’s method (in c) does not handle the

top of the building roof very well - there is an apparent dis-
continuity shown as a gap on the rooftop, while our method
(in d) not exhibits very minor breach, but also extends the
roof pattern coherently; (2) in the region where the far-end
balloon is removed, Perez’s method results in unnatural arti-
facts along the bushes, while our method preserves the con-
sistency and details of the bush-ground boundaries without
visually noticeable artifacts.

4.3. Single-image Super-resolution on Inpainted
Image

Having proven that the NLM method does exhibit effec-
tiveness in the inpaint stage, we further experimented with
the the single-image super-resolution and unsharp masking
in the pipeline. Fig. 4 shows 4 sets of results with our pro-
posed object removal method.

Figure 4. a) original image, b) mask, c) post-inpaint, d) SR and
sharpened final image

Fig. 5 and 6 shows 4 test runs of the same image in Fig. 4,
juxtaposing the results obtained from our method with the
9x9 patch-size exemplar-based inpaint[12], and with the
Coherency Sensitive Hashing method[13]. The filling re-
gions have been enlarged for viewing purpose.

Contrasting the left hand side and right hand side results
in Fig. 5, we observe that the 9x9 patch-based exemplar in-
paint has obvious artifacts in the filling region and discon-
nections along patterns that’re supposed to be coherent. Our
results exhibit much better consistency aligning with the un-
masked region.

During the experimentation, we noticed that the Co-
herency Sensitive Hashing method’s performance is highly

Figure 5. Left: 9x9 patch & enlarged, Right: ours & enlarged

Figure 6. Left: CSH & enlarged, Right: ours & enlarged

correlated to the mask structure. When the masks are
cropped with close bound on the object, then the algorithm
has a tendency to leave remains of the original object in the
scene, as we can see from the ’pond’ results in Fig. 6 on the
top left hand side. Our algorithm did not have this issue and
correctly removes the entire animal from the scene, leaving
the waves and reflections with only minimal artifacts. For
the image on the bottom, the CSH results leaves significant
boundary artifacts on the left side of the filling region, while
our result presents a fully blended visual appearance.

4.4. Sparse Coding

We test our method on lena image with different type
of defects using both a pre-defined dictionary and a KSVD
learned dictionary. Note that the red masks in Figure 7
& 8 are only for visualization. They are black pixels in
the degraded image. We visualize our learned and pre-
defined dictionary in Figure 10. Figure 7 is reconstruction
from text degraded image while Figure 8 is reconstruction
from scratch image. Both pre-defined dictionary and KSVD
learned dictionary achieved satisfying reconstruction qual-
ity. However, KSVD demonstrated better reconstruction
ability for our task while DCT pre-defined dictionary re-
construction suffers from lower PSNR and patchy artefacts
in some areas of the reconstructed images, which implies
that KSVD learned dictionary is better at dealing with spe-
cific problems. But a pre-defined dictionary is simple and

efficient and saves the trouble of finding a suitable training
set for the task.

We also notice that the less the degraded areas are, the
better reconstruction quality this algorithm will achieve. To
test the limit of the reconstruction ability of our proposed
method, we randomly pick 80% pixels in the original im-
age and set it to zeros. We use our algorithm to recover this
image and the result is shown in Figure 9. As can be ob-
served, both DCT and KSVD reconstructed images begin
to suffer from patchy artefacts while KSVD reconstructed
image is slightly more smooth. However, the result is al-
ready stunning since even if we lost 80% of the information
of the original image, we can still recover a visually satisfy-
ing result.

Figure 7. Left: Text degraded image, PSNR = 14.03dB Middle:
Reconstruction using pre-defined DCT dictionary,PSNR = 30.9dB
Right: reconstruction using KSVD learned dictionary, PSNR =
33.09dB

Figure 8. Left: Scratch degraded image, PSNR = 19.09dB Mid-
dle: Reconstruction using pre-defined DCT dictionary,PSNR =
33.68dB Right: reconstruction using KSVD learned dictionary,
PSNR = 35.94dB

Figure 9. Left: Degraded image with 80% pixel loss, PSNR =
6.42dB Middle: Reconstruction using pre-defined DCT dictio-
nary,PSNR = 24.27dB Right: reconstruction using KSVD learned
dictionary, PSNR = 26.75dB

Figure 10. Up: over complete DCT coefficient dictionary Down:
KSVD learned dictionary

5. Conclusion
In this project, we successfully realize two algorithms

that realize high-quality object/defect removal. For single
object removal, we proposed the priority-based inpainting
with Non-Local-Means, contained within the single-image
super-resolution pipeline, and post-process with unsharp
masking. For defect/scratch removal, we implemented
sparse coding based on both pre-defined and learned dic-
tionary. The experimental results and the comparison with
prior methods demonstrate the effectiveness in our algo-
rithm in terms of both visual appearance and evaluation on
Peak-Signal-to-Noise ratio.

6. Future Work
Currently, the two algorithms we worked on each re-

solves the object/defect removal problem limited to distinct
image features. The Laplacian edge detection within the
inpainting method is not effective on images with multiple
small cut-out zones, while the sparse coding algorithm is
not high-performing on images with large missing area. If
time permits, we would like to investigate in possible ways
to combine the two algorithms, making one that’s applica-
ble to both types of target images.

Furthermore, we realize through the experimental pro-

cess that the runtime of our algorithm is slow. Optimizing
for runtime by further examining our loop structures can be
beneficial for processing high-resolution images with large
sizes.

7. Acknowledgement
We would like to express our sincere gratitude towards

Professor Gordon Wetzstein for directing us to possible re-
search ideas and supplementing us with helpful resources.
We are also very grateful of Felix and other course staff
for their responses as we proceeded step by step in trouble-
shooting our algorithms. Finally, we would also like to
thank everyone in the EE367 class for their genuine support,
kindness, and feedback during the progress of our project.

References
[1] A.A. Efros, and W.T. Freeman. ”Image quilting for texture

synthesis and transfer.” In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, pp.
341-346. ACM, 2001.

[2] A. Talea. ”An Image Inpainting Technique Based on the Fase
Marching Method.” In Journal of Graphic Tools, vol. 9, pp.23-
24. 2004.

[3] A. Criminisi, P. Perez, and K. Toyama. ”Object removal by
exemplar-based inpainting.” In Computer Vision and Pattern
Recognition, 2003. Proceedings. 2003 IEEE Computer Soci-
ety Conference on, vol. 2, pp. II-II. IEEE, 2003.

[4] M. Bertalmio, P. Perez, and K. Toyama. ”Navier-Stokes,
Fluid Dynamics, and Image and Video Inpainting.” In Com-
puter Vision and Pattern Recognition, 2001. Proceedings.
2001 IEEE Computer Society Conference on, vol. 1, pp. I355-
I362. IEEE, 2003.

[5] J. Wu, and Q. Ruan. ”Object removal by cross isophotes
exemplar-based inpainting.” In Pattern Recognition, 2006.
ICPR 2006. 18th International Conference on, vol. 3, pp. 810-
813. IEEE, 2006.

[6] P. Viola, and M. Jones. ”Rapid object detection using a
boosted cascade of simple features.” In Computer Vision and
Pattern Recognition, 2001. CVPR 2001. Proceedings of the
2001 IEEE Computer Society Conference on, vol. 1, pp. I-I.
IEEE, 2001.

[7] J. Herling, and W. Broll. ”Advanced self-contained object
removal for realizing real-time diminished reality in uncon-
strained environments.” In Mixed and Augmented Reality
(ISMAR), 2010 9th IEEE International Symposium on, pp.
207-212. IEEE, 2010.

[8] O. Le Meur, and C. Guillemot. ”Super-resolution-based in-
painting.” In European Conference on Computer Vision, pp.
554-567. Springer Berlin Heidelberg, 2012.

[9] M. Ashikhmin. Synthesizing natural textures. In Proc. ACM
Symp. on Interactive 3D Graphics, pp. 217226, Research Tri-
angle Park, NC, Mar 2001.

[10] J. Mairal, M. Elad, and G. Sapiro. ”Sparse representation
for color image restoration.” IEEE Transactions on image pro-
cessing 17, no. 1 (2008): 53-69.

[11] Dictionary Learning Tools for Matlab, http://www.ux.
uis.no/˜karlsk/dle/

[12] Part of the source code referenced from:
http://scarlet.stanford.edu/teach/index.php/Object Removal

[13] S. Korman, and S. Avidan. ”Coherency sensitive hashing.”
In Computer Vision (ICCV), 2011 IEEE International Con-
ference on, pp. 1607-1614. IEEE, 2011.

[14] M. Aharon, M. Elad, and A. Bruckstein. ”k-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse rep-
resentation.” IEEE Transactions on signal processing 54, no.
11 (2006): 4311-4322.

[15] D. Glasner, S. Bagon and M. Irani. ”Super-Resolution From
a Single Image.” In Computer Vision (ICCV), 2009 IEEE
12th International Conference on, pp. 349-356. IEEE, 2009

[16] J. Liu, W. Li, and Y. Tian. ”Automatic thresholding of gray-
level pictures using two-dimension Otsu method.” In Circuits
and Systems, 1991. Conference Proceedings, China., 1991 In-
ternational Conference on, pp. 325-327. IEEE, 1991.

[17] Mallat, Stphane G., and Zhifeng Zhang. ”Matching pursuits
with time-frequency dictionaries.” IEEE Transactions on sig-
nal processing 41, no. 12 (1993): 3397-3415.

[18] Rubinstein, Ron, Alfred M. Bruckstein, and Michael Elad.
”Dictionaries for sparse representation modeling.” Proceed-
ings of the IEEE 98, no. 6 (2010): 1045-1057.

[19] Huang, Ke, and Selin Aviyente. ”Sparse representation for
signal classification.” NIPS. Vol. 19. 2006.

[20] Vinje, William E., and Jack L. Gallant. ”Sparse coding and
decorrelation in primary visual cortex during natural vision.”
Science 287, no. 5456 (2000): 1273-1276.

