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Abstract

We have implemented super-resolution techniques such
as machine learning methods and solving a least squares
problem with a prior to perform demosaicing. These tech-
niques include k-nearest neighbors (KNN), linear regres-
sion, and alternating direction method of multipliers with a
total variation prior (ADMM TV). For all methods, param-
eters were optimized to minimize the mean-squared-error
(MSE) and maximize the peak signal-to-noise ratio (PSNR).
The MSE and PSNR were compared to the results of tradi-
tional demosaicing methods, bilinear and Malvar interpo-
lation.

1. Introduction
1.1. Motivation

If we consider demosaicing and super-resolution to-
gether we notice that both methods utilize a technique to
fill in pixel value information. Therefore, we have imple-
mented a method that utilizes super-resolution techniques
such as machine learning methods and solving a least
squares problem to perform demosaicing.

1.2. Related Work

Traditional demosaicing methods include bilinear and
Malvar interpolation. Bilinear interpolation approximates
pixel values by averaging known pixel values in different
directions. Malvar uses only linear kernels to perform the
demosaicing by optimizing the kernel gain parameters [3].

There are many machine learning methods for image
super-resolution [4], for example, k-Nearest Neighbors,
Support Vector Regression and Super-Resolution Convo-
lutional Neural Network. Machine learning techniques
are used to predict the missing color/texture information.
In the general image optimization problem, we model
the problem as an optimization problem[5][6]. As men-
tioned in [5], image optimization problems contain (1) a
variable which represents the target image to be recon-

structed, (2) a linear operation matrix which represents the
downsampling/demosaicing process, (3) a penalty measure
which represents the difference of the results of downsam-
pling/demosaicing from the measured data, and (4) the pri-
ors and constraints on the the variables. Usually we encode
the prior information as a penalty (regularization) term in
the objective function, to manage the ill-conditionedness of
the original reconstruction problem. Once we define the
constrained optimization problem, iterative update methods
are applied to solve the best estimate of the higher resolu-
tion image.

2. The Method
2.1. Bayer Pattern Extraction and Noise

The first step in our procedure is to extract the bayer pat-
tern from the image. We also note that the standard meth-
ods for demosaicing, as well as ADMM+TV, kNN, and lin-
ear regression, are also denoising methods. Therefore, we
added a small amount of noise to the bayered image with
parameter σ = 0.01. An example is shown in Figure 1.

Figure 1. Bayer pattern with noise (noise parameter σ = 0.01).

2.2. Alternating Direction Method of Multipliers
and Total Variation

The first method of our model solves a least squares
problem to perform demosaicing. A classical approach for
solving a least squares problem is to apply Alternating Di-
rection Method of Multipliers (ADMM) with a Total Varia-
tion (TV) prior. This method promotes the usage of break-
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ing apart the original problem into smaller subproblems
and solving them by employing proximal operators. Fig-
ures 2 and 3 show the algorithm and proximal operators for
ADMM+TV, respectively. ADMM+TV was applied to each
color channel and in order to keep ”matrix-free” operations,
function handles forAx andATx were created to return the
bayer pattern of the approximated color channel at each it-
eration.

Figure 2. ADMM with TV prior algorithm.

Figure 3. Proximal operators for ADMM with TV prior.

2.3. k-Nearest Neighbors

The machine learning (ML) methods can be applied to
predict the missing details after the bilinear interpolation
result of bayer-patterned image is complete. As shown in
Fig.4, the bayer-patterned image is first split into 3 color
channels, for each color channel, we use bilinear interpola-
tion method to fill in the missing pixel values, and then the
interpolation result is combined with the detail information
predicted by k-Nearest Neighbors (kNN) model. The final
estimated image is formed by concatenating the resulting
3 color channels into a single RGB color image. In this
problem, the training sample of kNN is defined as an in-
put/output pair consisting of the bayered image patch and its
corresponding detail image patch. In the training image set,
the detail image patch is obtained by the following process:
Detail = Source−BilinearInterp(Bayer(Source))

For each test bayered image patch Pi, the k closest

bayered image patches are retrieved from the train-
ing set and the prediction is defined as a weighted
average of the corresponding detail image patches
of the k closest bayered image patch neighbors:

D̂i =
∑k

j=1W
(j)
i D

(j)
i

k

The weight W
(j)
i for the neighbor patch N

(j)
i of

the given test patch Pi is defined based on the geo-
metric distance between Pi and N

(j)
i , as shown below:

W
(j)
i := e−α·dist(Pi,N

(j)
i )

Instead of normalizing by
∑k
j=1W

(j)
i , we normalize by

k, which yields better results. We do not normalize by the
sum of weights because that as an example-based approach,
detail estimation can be very inaccurate if the closest
neighbors are still far from the test sample. By normalizing
by k we derive a more robust model which adds detail
information D

(j)
i with distance-based confidence W

(j)
i .

For the stability concern of ML-based prediction model,
we have to apply a range-limiter function on the prediction
result D̂i and apply another range-limiter after adding
to the interpolation image, to ensure the pixel values are
within valid range.

Figure 4. kNN illustration.

2.4. Linear Regression

Another detail prediction model we developed was lin-
ear regression. As shown in Fig.5, kNN detail predictor is
now replaced with linear regression predictor for each color
channel. Unlike kNN predicting an image patch at a time,
in regression model, for each missing color pixel value, we
use the linear regression predictor to predict its detail value
using the local image patch centered at the pixel location as
the feature input. The detailed value is defined as in kNN
model. As stated in Algorithm2, linear regression algorithm
optimizes the least square error over the entire training set
using a linear predictor model. In our problem, according to
the geometric structure of bayer pattern, 7 linear regression
models are used (3 for red estimation, 3 for blue estimation,
1 for green estimation).
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Figure 5. Regression illustration.

Data: training set {x(i), y(i)} for i=1,...,N , where N
is the number of training samples, x(i) ∈ Rk
and y ∈ R

Result: optimal linear predictor hθ(x) := θTx
begin

minimize the cost function to obtain the optimal θ̂:

θ̂ := argmin
θ

1

2

N∑
i=1

(hθ(x
(i))− y(i))2

A. Iterative solution (Stochastic Gradient
Descent):

1 while until the cost converges do
2 while i = 1, ..., N do

θ := θ + α(y(i) − hθ(x(i)))x(i)
end

end

B. Batch solution (closed form):
θ̂ = (XTX)−1XTY
where

X :=


. . . (x(1))T . . .
. . . (x(2))T . . .

.
. . . (x(N))T . . .

 , Y :=


y(1)

x(2)

.
x(N)


end

Algorithm 1: Linear Regression Algorithm

3. Parameter Search

3.1. Parameter Optimization and Time Complexity

ADMM+TV, kNN, and linear regression are parameter
methods. This means for ADMM+TV λ varies, and we
vary patch sizes in kNN and regression. We optimized the
parameters for the 24 images in the Kodak set so that the
mean-squared error (MSE) would be minimized and the
peak signal-to-noise ratio (PSNR) would be maximized.

A grid search was performed over 6 images of the
Kodak set to find an optimal λ that would minimize the

MSE over all 24 images. The time complexity to perform
the gird search with 5 λ’s over 6 images was approximately
6 hours. Even with performing grid search over 6 images,
we found that the smallest λ provided the smallest MSE.
Figures 6, 7, and 8 display this observation.

Figure 6. λ value search for Kodak image 4.

Figure 7. λ value search for Kodak image 19.

Figure 8. λ value search for Kodak image 23.

For the kNN method, the parameter k (number of closest
neighbors for prediction) and image patch size are deter-
mined by minimizing the MSE. As we can see in Fig.9,
as k value increases, the MSE of test set decreases, be-
cause the kNN model becomes more generalized to future
data with larger k value. To the contrary, the MSE is even
higher than the bilinear interpolation result when k = 3,
which implies incorporating kNN detail prediction actually
degrades the image quality. Additionally, the kNN com-
putational complexity increases when k increases. This
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results in a quality-complexity trade-off. For patch size
search, we found that a smaller patch size results in a lower
MSE Figure10. The reasonable explanation is that when the
patch size gets smaller, the probability that there’s a closely
matched neighbor for a given test patch increases, therefore
it yields better detail prediction for smaller patch size.

For linear regression, there’s no clear relationship be-
tween the patch size and the MSE performance Figure 11,
which implies pixels ranged over a distance are not corre-
lated in this linear prediction model. To optimize the time
complexity, the smallest patch size (8-by-8) is chosen.

Figure 9. kNN k value search.

Figure 10. kNN patch size search.

Figure 11. Regression patch size search.

4. Numerical Results
Figure 12 displays the PSNR results of our method

along with bilinear and Malvar interpolation. We have ob-
served that ADMM+TV performs best for optimizing λ for

Method MSE (sum)
ADMM+TV 0.2527
k-Nearest 0.0299
Linear Regression 0.0301
Bilinear 0.0327
Malvar 0.0584

Table 1. Sum of MSE for all 24 images of for each method.

Method training set size
k-Nearest (each model) 86016
Linear Regression (each model) 181977

Table 2. Training set size of ML methods.

Method MSE(training set) MSE(test set)
Bilinear 0.001216 0.002098
k-Nearest 0.001080 0.002067
Linear Regression 0.001110 0.001970

Table 3. Training/Test errors of ML methods.

a smaller set of images or per image. We show the results
for one optimized global λ for all 24 images and one λ op-
timized for 3 images. Table 1 shows the resulting sum of
MSE across all 24 images for all methods.

Table 2 shows the amount of training data we used for
kNN and linear regression methods. For the kNN model,
prediction time complexity depends on the size of the train-
ing data set, while linear regression prediction just depends
on feature dimension (here, it means patch size) regardless
of the amount of training data. This implies our linear re-
gression method can be efficiently applied to most portable
camera devices with limited computing power.

In table 3, we see training and test errors for kNN and
linear regression. Comparing with the MSE from bilinear
method, we can see kNN has a slight over-fitting problem
with low training error but high test error. Linear regres-
sion, on the other hand, generalizes the training data well
and gives low MSE for both the training set and test set.
Overall, both methods produce higher results than the sim-
ple bilinear method.

5. Conclusion

Bilinear and Malvar methods yield satisfactory results
with the lowest time complexity. While ADMM+TV can
be used to perform demosaicing, lambda is quite sensitive
to the image content and the run time is unpractical. The
kNN method (example-based) can predict the image details
well, while linear regression method can also improve im-
age quality based on bilinears result. Linear regression can
be applied to most portable camera devices with limited
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Figure 12. Method results from 6 images of Kodak data set (image 4,5,8,15,19, and 23.

computing power because of its low prediction complexity
and its linearity nature. Finally, we conclude that our image
detail prediction framework can incorporate most machine
learning models into any image interpolation techniques to
perform image demosaicing.

6. Future Work

Future work entails implementing Deep learning (CNN),
another machine learning technique from super-resolution.
We would also like to test the robustness of denoising in
all methods, as well as use ADMM+TV for entire bayer
pattern (all color channels) with other prior function such
as Non-local mean prior and find the unique minimum λ
that minimizes the MSE for all images.
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