EE365: Linear Quadratic Stochastic Control

Continuous state Markov decision process

Affine and quadratic functions

Linear quadratic Markov decision process
Continuous state Markov decision process
Continuous state Markov decision problem

- **dynamics:** \(x_{t+1} = f_t(x_t, u_t, w_t) \)
- \(x_0, w_0, w_1, \ldots \) independent
- **stage cost:** \(g_t(x_t, u_t, w_t) \)
- **state feedback policy:** \(u_t = \mu_t(x_t) \)
- choose policy to minimize

\[
J = \mathbb{E} \left(\sum_{t=0}^{T-1} g_t(x_t, u_t, w_t) + g_T(x_T) \right)
\]

- we consider the case \(X = \mathbb{R}^n \), \(U = \mathbb{R}^m \)
Continuous state Markov decision problem

- many (mostly mathematical) pathologies can occur in this case
 - but not in the special case we’ll consider
- a basic issue: how do you even represent the functions f_t, g_t, and μ_t?
 - for n and m very small (say, 2 or 3) we can use gridding
 - we can give the coefficients in some (dense) basis of functions
 - most generally, we assume we have a method to compute function values, given the arguments
 - exponential growth that occurs in gridding called curse of dimensionality
Continuous state Markov decision problem: Dynamic programming

- set \(v_T(x) = g_T(x) \)

- for \(t = T - 1, \ldots, 0 \)
 \[
 \mu_t(x) \in \arg\min_u E \left(g_t(x,u,w_t) + v_{t+1}(f_t(x,u,w_t)) \right)
 \]
 \[
 v_t(x) = E \left(g_t(x,\mu_t(x),w_t) + v_{t+1}(f_t(x,\mu_t(x),w_t)) \right)
 \]

- this gives value functions and optimal policy, \textit{in principle only}

- but you can’t in general represent, much less compute, \(v_t \) or \(\mu_t \)
Continuous state Markov decision problem: Dynamic programming

for DP to be tractable, \(f_t \) and \(g_t \) need to have special form for which we can

- represent \(v_t, \mu_t \) in some tractable way
- carry out expectation and minimization in DP recursion

one of the few situations where this holds: \textit{linear quadratic problems}

- \(f_t \) is an affine function of \(x_t, u_t \) (‘linear dynamical system’)
- \(g_t \) are convex quadratic functions of \(x_t, u_t \)
Linear quadratic problems

for linear quadratic problems

- value functions v_t^* are quadratic
- hence representable by their coefficients
- we can carry out the expectation and the minimization in DP recursion explicitly using linear algebra
- optimal policy functions are affine: $\mu_t^*(x) = K_t x + l_t$
- we can compute the coefficients K_t and l_t explicitly

in other words:

we can solve linear quadratic stochastic control problems in practice
Affine and quadratic functions
Affine functions

- $f : \mathbb{R}^p \to \mathbb{R}^q$ is affine if it has the form
 \[f(x) = Ax + b \]
 i.e., it is a linear function plus a constant

- a linear function is special case, with $b = 0$

- affine functions closed under sum, scalar multiplication, composition (with explicit formulas for coefficients in each case)
Quadratic function

- \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is quadratic if it has the form
 \[
 f(x) = \frac{1}{2} x^T P x + q^T x + \frac{1}{2} r
 \]
 with \(P = P^\top \in \mathbb{R}^{n \times n} \) (the \(\frac{1}{2} \) on \(r \) is for convenience)

- often write as quadratic form in \((x, 1)\):
 \[
 f(x) = \frac{1}{2} \begin{bmatrix} x \end{bmatrix}^\top \begin{bmatrix} P & q \\ q^\top & r \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}
 \]

- special cases:
 - quadratic form: \(q = 0, r = 0 \)
 - affine (linear) function: \(P = 0 \) (\(P = 0, r = 0 \))
 - constant: \(P = 0, q = 0 \)

- uniqueness: \(f(x) = \tilde{f}(x) \iff P = \tilde{P}, q = \tilde{q}, r = \tilde{r} \)
Calculus of quadratic functions

- quadratic functions on \mathbb{R}^n form a vector space of dimension

$$\frac{n(n + 1)}{2} + n + 1$$

- i.e., they are closed under addition, scalar multiplication
Composition of quadratic and affine functions

» suppose

» $f(z) = \frac{1}{2}z^T P z + q^T z + \frac{1}{2} r$ is quadratic function on \mathbb{R}^m

» $g(x) = Ax + b$ is affine function from \mathbb{R}^n into \mathbb{R}^m

» then composition $h(x) = (f \circ g)(x) = f(Ax + b)$ is quadratic

» write $h(x)$ as

\[
\frac{1}{2} \begin{bmatrix} x \\ 1 \end{bmatrix}^T \left(\begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix}^T \begin{bmatrix} P & q \\ q^T & r \end{bmatrix} \begin{bmatrix} A & b \end{bmatrix} \right) \begin{bmatrix} x \\ 1 \end{bmatrix}
\]

» so matrix multiplication gives us the coefficient matrix of h
Convexity and nonnegativity of a quadratic function

- f is convex (graph does not curve down) if and only if $P \geq 0$ (matrix inequality)

- f is strictly convex (graph curves up) if and only if $P > 0$ (matrix inequality)

- f is nonnegative (i.e., $f(x) \geq 0$ for all x) if and only if

\[
\begin{bmatrix}
P & q \\
q^T & r \\
\end{bmatrix} \geq 0
\]

- $f(x) > 0$ if and only if matrix inequality is strict

- nonnegative \Rightarrow convex
Checking convexity and nonnegativity

we can check convexity or nonnegativity in $O(n^3)$ operations by eigenvalue decomposition, Cholesky factorization, . . .

composition with affine function preserves convexity, nonnegativity:

\[f \text{ convex, } g \text{ affine } \implies f \circ g \text{ convex} \]

linear combination of convex quadratics, with nonnegative coefficients, is convex quadratic

if $f(x, w)$ is convex quadratic in x for each w (a random variable) then

\[g(x) = \mathbb{E}_w f(x, w) \]

is convex quadratic (i.e., convex quadratics closed under expectation)
Minimizing a quadratic

- if f is not convex, then $\min_x f(x) = -\infty$
- otherwise, x minimizes f if and only if $\nabla f(x) = Px + q = 0$
- for $q \not\in \text{range}(P)$, $\min_x f(x) = -\infty$
- for $P > 0$, unique minimizer is $x = -P^{-1}q$
- minimum value is
 \[
 \min_x f(x) = -\frac{1}{2}q^\top P^{-1}q + \frac{1}{2}r
 \]
 (a concave quadratic function of q)
- for case $P \geq 0$, $q \in \text{range}(P)$, replace P^{-1} with P^\dagger
Partial minimization of a quadratic

- suppose f is a quadratic function of (x, u), convex in u
- then the partial minimization function

$$g(x) = \min_{u} f(x, u)$$

is a quadratic function of x; if f is convex, so is g
- the minimizer $\arg\min_{u} f(x, u)$ is an affine function of x
- minimizing a convex quadratic function over some variables yields a convex quadratic function of the remaining ones
- i.e., convex quadratics closed under partial minimization
Partial minimization of a quadratic

\[f(x, u) = \frac{1}{2} \begin{bmatrix} x \\ u \\ 1 \end{bmatrix}^T \begin{bmatrix} P_{xx} & P_{xu} & q_x \\ P_{ux} & P_{uu} & q_u \\ q_x^T & q_u^T & r \end{bmatrix} \begin{bmatrix} x \\ u \\ 1 \end{bmatrix} \]

with \(P_{uu} > 0, \ P_{ux} = P_{xu}^T \)

minimizer of \(f \) over \(u \) satisfies

\[0 = \nabla_u f(x, u) = P_{uu}u + P_{ux}x + q_u \]

so \(u = -P_{uu}^{-1}(P_{ux}x + q_u) \) is an affine function of \(x \)
Partial minimization of a quadratic

- substituting u into expression for f gives

$$g(x) = \frac{1}{2} \begin{bmatrix} x \\ 1 \end{bmatrix}^T \begin{bmatrix} P_{xx} - P_{xu} P_{uu}^{-1} P_{ux} & q_x - P_{xu} P_{uu}^{-1} q_u \\ q_x^T P_{uu}^{-1} P_{ux} & r - q_u^T P_{uu}^{-1} q_u \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

- $P_{xx} - P_{xu} P_{uu}^{-1} P_{ux}$ is the Schur complement of P w.r.t. u

- $P_{xx} - P_{xu} P_{uu}^{-1} P_{ux} \geq 0$ if $P \geq 0$

- or simpler: g is composition of f with affine function $x \mapsto (x, u)$

$$\begin{bmatrix} x \\ u \end{bmatrix} = \begin{bmatrix} I \\ -P_{uu}^{-1} P_{ux} \end{bmatrix} x + \begin{bmatrix} 0 \\ -P_{uu}^{-1} q_u \end{bmatrix}$$

- we already know how to form composition quadratic (affine), and the result is convex
Summary

convex quadratics are closed under

- addition
- expectation
- pre-composition with an affine function
- partial minimization

in each case, we can explicitly compute the coefficients of the result using linear algebra
Linear quadratic Markov decision process
(Random) linear dynamical system

- dynamics \(x_{t+1} = f_t(x_t, u_t, w_t) = A_t(w_t)x_t + B_t(w_t)u_t + c_t(w_t) \)
- for each \(w_t \), \(f_t \) is affine in \((x_t, u_t) \)
- \(x_0, w_0, w_1, \ldots \) are independent
- \(A_t(w_t) \in \mathbb{R}^{n \times n} \) is dynamics matrix
- \(B_t(w_t) \in \mathbb{R}^{n \times m} \) is input matrix
- \(c_t(w_t) \in \mathbb{R}^n \) is offset
Linear quadratic stochastic control problem

- stage cost $g_t(x_t, u_t, w_t)$ is convex quadratic in (x_t, u_t) for each w_t
- choose policy $u_t = \mu_t(x_t)$ to minimize objective

$$J = \mathbb{E} \left(\sum_{t=0}^{T-1} g_t(x_t, u_t, w_t) + g_T(x_T) \right)$$
Dynamic programming

- set $v_T(x) = g_T(x)$

- for $t = T - 1, \ldots, 0$,

 $$
 \mu_t(x) \in \arg\min_u \mathbb{E} \left(g_t(x, u, w_t) + v_{t+1}(f_t(x, u, w_t)) \right)
 $$

 $$
 v_t(x) = \mathbb{E} \left(g_t(x, \mu_t(x), w_t) + v_{t+1}(f_t(x, \mu_t(x), w_t)) \right)
 $$

- all v_t are convex quadratic, and all μ_t are affine

- this gives value functions and optimal policy, \textit{explicitly}
Dynamic programming

we show v_t are convex quadratic by (backward) induction

- suppose v_T, \ldots, v_{t+1} are convex quadratic
- since f_t is affine in (x, u), $v_{t+1}(f_t(x, u, w_t))$ is convex quadratic
- so $g_t(x, u, w_t) + v_{t+1}(f_t(x, u, w_t))$ is convex quadratic
- and so is its expectation over w_t
- partial minimization over u leaves convex quadratic of x, which is $v_t(x)$
- argmin is affine function of x, so optimal policy is affine
Linear equality constraints

- can add (deterministic) linear equality constraints on x_t, u_t into g_t, g_T:

$$g_t(x, u, w) = g_t^{\text{quad}}(x, u, w) + \begin{cases} 0 & \text{if } F_t x + G_t u = h_t \\ \infty & \text{otherwise} \end{cases}$$

- everything still works:
 - v_t is convex quadratic, possibly with equality constraints
 - μ_t is affine

- reason: minimizing a convex quadratic over some variables, subject to equality constraints, yields a convex quadratic in remaining variables