SCP Solver for Nonlinear Quantitative Susceptibility Mapping

Grant Yang, Thanchanok Teeraratkul
EE364b: Convex Optimization II Class Project

Introduction

Magnetic resonance imaging (MRI) is inherently sensitive to changes in tissue magnetic susceptibility. Changes in tissue magnetic susceptibility result in a shift in the phase of the MR signal. The relationship between the phase of the image and the tissue magnetic susceptibility can be described as $Ax = b$, where $A \in \mathbb{R}^{m \times n}$ is a known Toeplitz matrix, $x \in \mathbb{R}^n$ is a vector of magnetic susceptibilities and $b \in \mathbb{R}^m$ is a vector of phase angles. Calculating quantitative susceptibility maps (QSM) from the MR image with proper regularization would give researchers a noninvasive method for studying neurodegenerative diseases.

Common Formulation

Since A contains low singular values, direct inversion of A results in amplification of noise and artifacts in the reconstructed image. Therefore, a regularization scheme is needed to calculate the susceptibility maps. The most common QSM formulation employs a l_2 norm penalty on the gradient of the image. However, this formulation encourages a piecewise linear solution which obscures fine tissue detail that are of interest in studying diseases such as multiple sclerosis.

Our Formulation

We impose a total variation norm based constraint to improve retention of fine tissue structures compared to the l_2 norm constraint in the standard formulation. We also formulate the relationship between susceptibility and phase shift as a nonconvex, complex relation by taking the pointwise exponential of iAx and ib. This complex formulation has been shown to improve robustness to errors in the phase map.

 SCP Algorithm

We implemented a Sequential Convex Program (SCP) to solve our problem in MATLAB. Our solver takes advantage of the Toeplitz structure of A, and an affine relaxation of the nonconvex problem in order to achieve fast convergence.

Given

- x^0: initial guess
- λ^0: initial Lagrange multiplier

repeat until convergence

1. minimize $\nabla f(x^k)^T p + \lambda^k p^T p$
 subject to $c(x^k) + \lambda^k \nabla c(x^k)^T p \geq 0$
2. Compute step size α by backtracking line search.
3. Update $x^{k+1} := x^k + \alpha p^*$, $\lambda^{k+1} := \lambda^k$, $k := k + 1$.

return x.

In step 2, the QP was solved using a quasi-Newton method with limited memory BFGS by approximating the constraint with a log-barrier function.

Algorithm Performance

Quantitative susceptibility maps were calculated from a MR data set acquired on a 7T system. The dimension of the image was $280 \times 280 \times 170$ voxels with $0.5 \times 0.5 \times 0.75$ mm resolution. The SCP was solved on the Sherlock computing cluster, which uses an Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz with 24 GB of RAM in 9 minutes and 36 seconds. This represents a substantial speedup over the current solver for the nonconvex QSM formulation as shown in Figure 1 below.

Results

Figure 2: Solution using SQP solver on nonconvex formulation showing reduced artifacts with good detail retention.

Figure 3: The nonconvex formulation with a total variation based constraint shows improved tissue detail retention and artifact suppression compared to the popular l_2 norm and direct inversion methods.

Conclusion

Our SCP implementation for solving the nonconvex QSM formulation represents a significant increase in speed over current methods. In addition, the total variation norm-based constraint limits image artifacts while retaining tissue detail better than the current l_2 norm or direct inversion methods. More work is needed to validate data and performance on pathological tissue.

Acknowledgements

Professor Stephen Boyd, EE364b TAs, Christoph Leuze, Professor Jennifer McNab, Professor Petra Schmalbrock,