Subsurface Detection with Convex Optimization

David Strauss
EE364b: Convex Optimization II Class Project

Introduction

- non-invasive localization of subsurface, sub-wavelength, conductivity perturbations based on external electromagnetic measurements
- apply convex heuristics to a non-convex imaging problem: sequential convex programming and alternating direction method of multipliers (ADMM)

Model

- plane waves at multiple frequencies and incidence angles illuminate the imaging domain
- a perturbation, \(\sigma_u \), is buried under the surface in the region \(\Omega^1 \)
- measurements of the electric field, \(\hat{u}_j \in \Omega^2 \), are made near the surface
- all fields satisfy the Helmholtz equation with a source \(f \):
 \[
 (\nabla^2 + \omega^2 \mu + i \omega \epsilon) \hat{u} = f
 \]

Notation

Sets

- \(\Omega \) = \(100 \times 100 \) pixel modeling domain, \((\Delta x = \Delta y = 5 \text{m}) \)
- \(\Omega^1 \) = \(25 \times 40 \) pixel bounding region of scattering object
- \(\Omega^2 \) = set of receiver measurements
- \(j \) = index over frequencies, illuminations

Variables

- \(u \in \mathbb{C}^{\Omega^2} \) = field measurements
- \(\hat{u} \in \mathbb{C}^{\Omega^1} \) = scattered electric field according to model in \(\Omega \)
- \(b \in \mathbb{R}^{\Omega^1} \) = background electric field according to model in \(\Omega \)
- \(p \in \mathbb{R}^{\Omega^1} \) = material perturbation vector in \(\Omega^2 \), difference \(\sigma_u - \sigma_b \)

Operators

- \(A \) = Helmholtz operator for background profile: \(\nabla^2 + k^2_0 \)
- \(\mathcal{M}_u \) = measurement operator; selects \(\Omega^2 \) from \(\Omega \)
- \(\mathcal{M}_D \) = perturbation domain operator; selects pixels \(\Omega^1 \) from \(\Omega \)

Problem Description

- want to find optimal \(u_j \) and \(p \)
 \[
 \text{minimize } \sum_j \| u_j - \mathcal{M}_u \hat{u}_j \|^2 \\
 \text{subject to } A u_j + (u_j + b_j) \circ \mathcal{M}_D(p) = 0 \quad j = 1, \ldots, N \\
 p \geq 0.
 \]
- \(\circ \) is the Hadamard, or entry-wise, product of the two vectors
- biconvex problem; if \(p \) is held constant, the problem is convex in \(u \); if \(u \) is constant, the problem is convex in \(p \)
- Helmholtz constraint contains a single non-convex term
 \[
 Au + (b \circ \mathcal{M}_D(p) + u \circ \mathcal{M}_D(p)) = 0
 \]

Sequential Born Approximation

- when the scattered wave is small with respect to the incident wave, i.e. small perturbation, the Born approximation works
- linearize the non-convex term
 \[
 (\delta u_j, \delta p_j) = \min \| u_j - \mathcal{M}_u (u_j + \delta u_j) \|^2 \\
 \text{subject to } A (u_j + \delta u_j) + \delta u_j \circ \mathcal{M}_D(p) + (u_j + b_j) \circ \mathcal{M}_D(p) = 0 \\
 \| \delta p_j \|_\infty \leq \gamma \\
 \delta p_j \geq 0.
 \]
- collect, average, and update: \(p^{k+1} = p^k + \frac{1}{N} \sum_{j=1}^N \delta p_j \)
- \(\gamma = 0.005 \) works for this problem.

ADMM

- introduce the variable \(X_j = p \circ \mathcal{M}_D(u_j + b_j) \)
- \(p \geq 120 \) works well, acts as regularization
- exactly solve at each illumination, \(j \):
 \[
 \begin{align*}
 (u_j^{k+1}, X_j^{k+1}) = \arg\min_{u_j, X_j} & \| u_j - \mathcal{M}_u u_j \|^2 + \\
 & \frac{\varsigma}{2} \| X_j - F_j \circ \mathcal{M}_D(u_j + b_j) \|^2 \\
 \text{subject to } & A u_j + \mathcal{M}_D X_j = 0 \\
 \end{align*}
 \]
- collect \(X, u \) and update for \(p \) with exact solve and thresholding:
 \[
 p^{k+1} = \arg\min_{p} \sum_{j=1}^N \| X_j^{k+1} + F_j^{k+1} - p \circ \mathcal{M}_D(u_j^{k+1} + b_j) \|^2 \\
 \text{subject to } p \geq 0.
 \]
- update dual \(F_j^{k+1} = F_j^k + X_j^{k+1} - (p^{k+1} \circ \mathcal{M}_D(u_j^{k+1} + b_j)) \)

Results

- ran algorithm 4 frequencies (1kHz, 5kHz, 10kHz, 15kHz), two incidence angles \((45^\circ, 70^\circ) \), \(\sigma_i = 0.01 \text{ (s/m)} \), \(\sigma_b = 0.04 \text{ (s/m)} \)
- 30 surface measurements
- 15 sequential Born approximations iterations takes 38 minutes (Intel i5, 2.8GHz) with CVX.
- 100 iterations of ADMM takes 6 minutes (Intel i5, 2.8GHz)

Conclusions

- ADMM and SBA give similar results, ADMM currently much faster
- add total variation regularization to ADMM algorithm, promote sharp edges
- custom interior point solver for sequential Born approximation
- noisy measurements introduced at each iteration gives similar performance