Model Predictive Control for Trajectory Following with Actuator Failure

Thomas Lipp
EE364b: Convex Optimization II Class Project

Introduction

Desirable to have automated vehicles follow a given trajectory
Traditional approaches:
 - Value function solution
 - Link trajectory and desired actuator inputs at trajectory creation
 - Cannot adapt to changes in actuator output (degradation or failure)
 - Model predictive control (MPC) can account for actuator changes

The Trajectory Following Problem

- Discrete vehicle dynamics:
 \[x_{t+1} = F(x_t) + G(x_t, u_t) \tag{1} \]
 - Vehicle state and control inputs \(x_t \in \mathbb{R}^m, u_t \in \mathbb{R}^m \)
 - Vehicle dynamics \(F : \mathbb{R}^m \to \mathbb{R}^m \)
 - Control dynamics \(G : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \)
 - Desired trajectory is \(x_t \in \mathbb{R}^m, t = 0, \ldots, T \)
 - The trajectory following problem can be stated as:
 \[
 \begin{align*}
 \text{minimize} & \quad \sum_{t=0}^{T-1} (L(u_t) + D(x_{t+1}, x_t+1)) \\
 \text{subject to} & \quad x_{t+1} = F(x_t) + G(x_t, u_t), \quad t = 0, \ldots, T-1 \\
 & \quad u_t \in U, \quad t = 0, \ldots, T-1 \\
 & \quad x_t \in X, \quad t = 1, \ldots, T
 \end{align*}
 \tag{2} \]

- variables:
 - Vehicle state \(x_t, t = 0, \ldots, T \)
 - Control inputs \(u_t, t = 0, \ldots, T-1 \)

- problem data:
 - Time \(T \), initial state \(x_{\text{initial}} \)
 - Trajectory \(x_t, t = 0, \ldots, T \)
 - Vehicle dynamics \(F(x_t, G(x_t, u_t) \)
 - Control law \(L : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \)
 - Deviation from trajectory cost \(D : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m \)
 - Set of valid states and inputs \(X \) and \(U \)

The LQR Approach

- Linear quadratic regulation (LQR) is a well studied approach
- LQR has closed form solutions solved with algebraic Riccati equations
- LQR formulation:
 - Assumes linear vehicle dynamics
 - Takes \(L \) and \(D \) to be quadratic
 - Takes \(X = \mathbb{R}^m, U = \mathbb{R}^m \)
 - No ability to encode actuator constraints

A Model Predictive Control Approach

- Even if tractable, equation (2) may be too large to be solved in real time.
- Instead at time \(t \) with state \(x_{\text{current}} \), look ahead \(s \) time steps, and take action \(u_t \) given by:
 \[
 \begin{align*}
 \text{minimize} & \quad \sum_{t+i=0}^{T-1} (L(u_t) + R(S, x_t)) + V(x_{t+s}, x_{t+1}) \\
 \text{subject to} & \quad x_{t+i} = A_t x_t + B_t u_t + C_t, \quad i = t, \ldots, t + s - 1 \\
 & \quad x_t = x_{\text{current}}, \quad u_t \in U, \quad t = t, \ldots, t + s - 1 \\
 & \quad x_t \in X, \quad t = t, \ldots, t + s
 \end{align*}
 \tag{3} \]

- problem data:
 - \(L \), \(s \), \(x_{\text{Current}} \)
 - Linearized dynamics about \(\bar{x}_t \): \(A_t \in \mathbb{R}^{m \times m}, B_t \in \mathbb{R}^{m \times m} \), \(\bar{C}_t \in \mathbb{R}^m \)
 - Convex control cost \(L \), for example quadratic
 - \(X \) and \(U \) convex.
 - Encode control constraints on \(U \) such as actuator failure: \(M u_t < N \)
 - Convex regularization cost \(\bar{R} \) and final deviation cost \(\bar{V} \)

Example: Race Car Turn Formulation

- car has state \(x = [x_{\text{pos}}, y_{\text{pos}}, y_{\text{vel}}] \)
- control \(u = [u_t, u_y] \)
- race car modeled by discrete dynamics with time step 0.1:
 \[
 A_t = \begin{bmatrix}
 1.0 & 0.1 & 0.0 \\
 0 & 1.0 & 0.0 \\
 0 & 0 & 1.0
 \end{bmatrix}, \quad B_t = \begin{bmatrix}
 0.005 & 0.0 \\
 0.1 & 0.0 \\
 0 & 0.1
 \end{bmatrix}, \quad C_t = \begin{bmatrix}
 0 \\
 0 \\
 0
 \end{bmatrix}
 \forall t \tag{4} \]

Example: Race Car Turn Results

- The designed input path uses the designed inputs from trajectory generation
- Impact of varying \(s \) on the performance of MPC

Example: Race Car, Effects of Look Ahead

- Infeasible trajectory: performance improves when the vehicle is allowed greater freedom (larger \(s \)) in returning to the trajectory
- Feasible trajectory with no \(L \) cost, noise, or over-actuation: greedy control is optimal and recovers the designed inputs

Conclusions

- Including actuator constraints, which traditional approaches do not allow, produces significant performance improvements.
- MPC formulation can be easily adapted to account for nonlinear dynamics, road constraints, and slew limits on control inputs.