Model Selection in Gaussian Graphical Models from High-Dimensional Missing Data

Yuxin Chen Email: yxchen@stanford.edu
EE364b: Convex Optimization II Class Project

Background

- Graphical Models
 - Encode conditional independence among random variables
- Structure Learning
 - Challenging: recover underlying graph structure from a few samples
 - More challenging: what if the samples contain incomplete entries
- Existing Approaches
 (1) Convex Optimization [ChaParWil2010] - a single pattern w/ very few latent variables
 (2) Alternating EM [StaBue2010] - no theoretical guarantee

Motivation

- Consider the following scenario...
 (1) Multiple missing data patterns
 (2) Each pattern may contain only a few entries
- Questions:
 - Is the graphical structure recoverable?
 - If so, under what conditions? (#samples, special structures on graphs...)

Problem Setup

- Underlying Structure: Gaussian Graphical Models G
 - p-dimensional: (X_1, \ldots, X_p) (high-dimensional regime)
 - Covariance (unknown): Σ ($K = \Sigma^{-1}$)
- Samples
 - n samples i.i.d. drawn from G
 - 1 different missing data patterns: each sample belongs to each missing pattern equally likely
- Tasks
 - Given the sample collection, how to recover the edge set of G

Exploiting Sparsity

- Sparsity
 - Oftentimes, the associated graph is sparse
 - Gaussian case $\Rightarrow K = \Sigma^{-1}$ is sparse!
- Matrix Completion
 - Index set Ω: $(i,j) = 1$ iff $(i,j) \in \Omega$
 - Estimate $(\hat{\Sigma})_{ij} = K_{ij}$ (for large n)
 - minimize $\|\Sigma^{-1}\|_0$ subject to $|\Sigma_{ij} - (\hat{\Sigma})_{ij}| < \epsilon, \forall (i,j) \in \Omega$, Non-convex!

Algorithm: Convex Relaxation

$\Sigma = \begin{bmatrix}
\Sigma_0 & \Phi \\
\Phi & H
\end{bmatrix}$

Σ_0 is sparse matrix Σ_0^* support known H residual

- Applying Taylor expansion:
 $\Sigma_0^* = \Sigma_0 + \sum_{|\Omega|} H_{\Omega} K_{\Omega} H_{\Omega}^T$
 - Treat W as noise $\iff W$ small $\iff H^TKH^T$ and $\Sigma_0 - \Sigma_0^*$ small
- ℓ_1 Relaxation – sparse representation
 minimize $f(K,H) = \lambda_0 \|K\|_1 + \frac{1}{2} \|\Sigma_0 K \Sigma_0^* - H - \Sigma_0^*\|_F^2$
 subject to $\text{supp}(H) \subseteq \Omega$

Theoretical Guarantee: (Main Result)

- The algorithm recovers the true support if the following assumptions hold:
 (1) Σ_0 invertible (non-degenerate)
 (2) Σ_0 and the support set \hat{S} is incoherent (preserves signal energy)
 (3) Each non-zero entry of K contains sufficiently large energy (avoid being buried by noise)
 (4) The residual HWH is small
 (5) Sufficiently many samples: $n > (p\|\Sigma_0\|_2^2$

Roadmap of Theorem Proofs

- Optimality and Uniqueness Condition
 - \exists a primal-dual pair (K,Z) s.t.
 (1) $Z \in \text{relint}(\partial \|K\|_1)$
 (2) (K,Z) satisfies zero subgradient condition.
- Construction of a Primal-dual Pair
 - Primal-dual witness method
 (1) Study instead the optimizer \hat{K} of another partial convex program
 minimize $\lambda_0 \|K_{\Omega} + \frac{1}{2} \|\Sigma_0 K \Sigma_0^* + H - \Sigma_0^*\|_F^2$
 subject to $\text{supp}(K) \subseteq \Omega$, $\text{supp}(H) \subseteq \Omega$
 - \hat{K} has the correct support.
 (2) Use the zero-subgradient condition to find \hat{Z}.
 (3) Test whether $\hat{Z} \in \text{relint}(\partial \|K\|_1)$.

Numerical Example

- Consider Pairwise Missing Patterns
 - Each sample contains only 2 entries
 - Define density ρ as the portion of observed pairs

The Way Ahead

- More general matrix completion problem
 minimize $\|\Sigma^{-1}\|_O$
 subject to $P_1(\Sigma) = P_1(\Sigma_0)$
- Using empirical estimate on covariance is not efficient in sample complexity
 - may consider log-likelihood instead

In general, this is NP-hard \Rightarrow need to exploit structures