
Truncated Newton Method

• approximate Newton methods

• truncated Newton methods

• truncated Newton interior-point methods

EE364b, Stanford University



Newton’s method

• minimize convex f : Rn → R

• Newton step ∆xnt found from (SPD) Newton system

∇2f(x)∆xnt = −∇f(x)

using Cholesky factorization

• backtracking line search on function value f(x) or norm of gradient
‖∇f(x)‖

• stopping criterion based on Newton decrement λ2/2 = −∇f(x)T∆xnt

or norm of gradient ‖∇f(x)‖

EE364b, Stanford University 1



Approximate or inexact Newton methods

• use as search direction an approximate solution ∆x of Newton system

• idea: no need to compute ∆xnt exactly; only need a good enough
search direction

• number of iterations may increase, but if effort per iteration is smaller
than for Newton, we win

• examples:

– solve Ĥ∆x = −∇f(x), where Ĥ is diagonal or band of ∇2f(x)
– factor ∇2f(x) every k iterations and use most recent factorization

EE364b, Stanford University 2



Truncated Newton methods

• approximately solve Newton system using CG or PCG, terminating
(sometimes way) early

• also called Newton-iterative methods; related to limited memory
Newton (or BFGS)

• total effort is measured by cumulative sum of CG steps done

• for good performance, need to tune CG stopping criterion, to use just
enough steps to get a good enough search direction

• less reliable than Newton’s method, but (with good tuning, good
preconditioner, fast z → ∇2f(x)z method, and some luck) can handle
very large problems

EE364b, Stanford University 3



Truncated Newton method

• backtracking line search on ‖∇f(x)‖

• typical CG termination rule: stop after Nmax steps or

η =
‖∇2f(x)∆x+∇f(x)‖

‖∇f(x)‖
≤ ǫpcg

• with simple rules, Nmax, ǫpcg are constant

• more sophisticated rules adapt Nmax or ǫpcg as algorithm proceeds
(based on, e.g., value of ‖∇f(x)‖, or progress in reducing ‖∇f(x)‖)

η = min(0.1, ‖∇f(x)‖1/2) guarantees (with large Nmax) superlinear
convergence

EE364b, Stanford University 4



CG initialization

• we use CG to approximately solve ∇2f(x)∆x+∇f(x) = 0

• if we initialize CG with ∆x = 0

– after one CG step, ∆x points in direction of negative gradient
(so, Nmax = 1 results in gradient method)

– all CG iterates are descent directions for f

• another choice: initialize with ∆x = ∆xprev, the previous search step

– initial CG iterates need not be descent directions
– but can give advantage when Nmax is small

EE364b, Stanford University 5



• simple scheme: if ∆xprev is a descent direction (∆xT
prev∇f(x) < 0)

start CG from

∆x =
−∆xT

prev∇f(x)

∆xT
prev∇

2f(x)∆xprev
∆xprev

otherwise start CG from ∆x = 0

EE364b, Stanford University 6



Example

ℓ2-regularized logistic regression

minimize f(w) = (1/m)
∑m

i=1 log
(

1 + exp(−bix
T
i w)

)

+
∑n

i=1 λiw
2
i

• variable is w ∈ Rn

• problem data are xi ∈ Rn, bi ∈ {−1, 1}, i = 1, . . . ,m, and
regularization parameter λ ∈ Rn

+

• n is number of features; m is number of samples/observations

EE364b, Stanford University 7



Hessian and gradient

∇2f(w) = ATDA+ 2Λ, ∇f(w) = ATg + 2Λw

where

A = [b1x1 · · · bmxm]T , D = diag(h), Λ = diag(λ)

gi = −(1/m)/(1 + exp(Aw)i)

hi = (1/m) exp(Aw)i/(1 + exp(Aw)i)
2

we never form ∇2f(w); we carry out multiplication z → ∇2f(w)z as

∇2f(w)z =
(

ATDA+ 2Λ
)

z = AT (D(Az)) + 2Λz

EE364b, Stanford University 8



Problem instance

• n = 10000 features, m = 20000 samples (10000 each with bi = ±1)

• xi have random sparsity pattern, with around 10 nonzero entries

• nonzero entries in xi drawn from N (bi, 1)

• λi = 10−8

• around 500000 nonzeros in ∇2f , and 30M nonzeros in Cholesky factor

EE364b, Stanford University 9



Methods

• Newton (using Cholesky factorization of ∇2f(w))

• truncated Newton with ǫcg = 10−4, Nmax = 10

• truncated Newton with ǫcg = 10−4, Nmax = 50

• truncated Newton with ǫcg = 10−4, Nmax = 250

EE364b, Stanford University 10



Convergence versus iterations

0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

cg 10
cg 50
cg 250
Newton

‖∇
f
‖

k

EE364b, Stanford University 11



Convergence versus cumulative CG steps

0 200 400 600 800 1000 1200 1400 1600 1800
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

cg 10
cg 50
cg 250

‖∇
f
‖

cumulative CG iterations

EE364b, Stanford University 12



• convergence of exact Newton, and truncated Newton methods with
Nmax = 50 and 250 essentially the same, in terms of iterations

• in terms elapsed time (and memory!), truncated Newton methods far
better than Newton

• truncated Newton with Nmax = 10 seems to jam near ‖∇f(w)‖ ≈ 10−6

• times (on AMD270 2GHz, 12GB, Linux) in sec:

method ‖∇f(w)‖ ≤ 10−5 ‖∇f(w)‖ ≤ 10−8

Newton 1600 2600
cg 10 4 —
cg 50 17 26
cg 250 35 54

EE364b, Stanford University 13



Truncated PCG Newton method

approximate search direction found via diagonally preconditioned PCG

0 200 400 600 800 1000 1200 1400 1600 1800
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 

 

cg 10
cg 50
cg 250
pcg 10
pcg 50
pcg 250

‖∇
f
‖

cumulative CG iterations

EE364b, Stanford University 14



• diagonal preconditioning allows Nmax = 10 to achieve high accuracy;
speeds up other truncated Newton methods

• times:

method ‖∇f(w)‖ ≤ 10−5 ‖∇f(w)‖ ≤ 10−8

Newton 1600 2600
cg 10 4 —
cg 50 17 26
cg 250 35 54
pcg 10 3 5
pcg 50 13 24
pcg 250 23 34

• speedups of 1600:3, 2600:5 are not bad
(and we really didn’t do much tuning . . . )

EE364b, Stanford University 15



Extensions

• can extend to (infeasible start) Newton’s method with equality
constraints

• since we don’t use exact Newton step, equality constraints not
guaranteed to hold after finite number of steps (but ‖rp‖ → 0)

• can use for barrier, primal-dual methods

EE364b, Stanford University 16



Truncated Newton interior-point methods

• use truncated Newton method to compute search direction in
interior-point method

• tuning PCG parameters for optimal performance on a given problem
class is tricky, since linear systems in interior-point methods often
become ill-conditioned as algorithm proceeds

• but can work well (with luck, good preconditioner)

EE364b, Stanford University 17



Network rate control

rate control problem

minimize −U(f) = −
∑n

j=1 log fj
subject to Rf � c

with variable f

• f ∈ Rn
++ is vector of flow rates

• U(f) =
∑n

j=1 log fj is flow utility

• R ∈ Rm×n is route matrix (Rij ∈ {0, 1})

• c ∈ Rm is vector of link capacities

EE364b, Stanford University 18



Dual rate control problem

dual problem

maximize g(λ) = n− cTλ+
∑m

i=1 log(r
T
i λ)

subject to λ � 0

with variable λ ∈ Rm

duality gap

η = −U(f)− g(λ)

= −
n
∑

j=1

log fj − n+ cTλ−
m
∑

i=1

log(rTi λ)

EE364b, Stanford University 19



Primal-dual search direction (BV §11.7)

primal-dual search direction ∆f , ∆λ given by

(D1 +RTD2R)∆f = g1 − (1/t)RTg2, ∆λ = D2R∆f − λ+ (1/t)g2

where s = c−Rf ,

D1 = diag(1/f2
1 , . . . , 1/f

2
n), D2 = diag(λ1/s1, . . . , λm/sm)

g1 = (1/f1, . . . , 1/fn), g2 = (1/s1, . . . , 1/sm)

EE364b, Stanford University 20



Truncated Newton primal-dual algorithm

primal-dual residual:

r = (rdual, rcent) =
(

−g2 +RTλ, diag(λ)s− (1/t)1
)

given f with Rf ≺ c; λ ≻ 0

while η/g(λ) > ǫ

t := µm/η
compute ∆f using PCG as approximate solution of

(D1 +RTD2R)∆f = g1 − (1/t)RTg2
∆λ := D2R∆f − λ+ (1/t)g2
carry out line search on ‖r‖2, and update:

f := f + γ∆f , λ := λ+ γ∆λ

EE364b, Stanford University 21



• problem instance

– m = 200000 links, n = 100000 flows
– average of 12 links per flow, 6 flows per link
– capacities random, uniform on [0.1, 1]

• algorithm parameters

– truncated Newton with ǫcg = min(0.1, η/g(λ)), Nmax = 200
(Nmax never reached)

– diagonal preconditioner
– warm start
– µ = 2
– ǫ = 0.001 (i.e., solve to guaranteed 0.1% suboptimality)

EE364b, Stanford University 22



Primal and dual objective evolution

0 50 100 150 200 250 300 350
2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

 

 

cumulative PCG iterations

−U(f)
g(λ)

EE364b, Stanford University 23



Relative duality gap evolution

0 50 100 150 200 250 300 350
10

−4

10
−3

10
−2

10
−1

10
0

10
1

cumulative PCG iterations

re
la
ti
ve

d
u
al
it
y
g
ap

EE364b, Stanford University 24



Primal and dual objective evolution (n = 106)

0 50 100 150 200 250 300 350 400
2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

6

 

 

cumulative PCG iterations

−U(f)
g(λ)

EE364b, Stanford University 25



Relative duality gap evolution (n = 106)

0 50 100 150 200 250 300 350 400
10

−4

10
−3

10
−2

10
−1

10
0

10
1

cumulative PCG iterations

re
la
ti
ve

d
u
al
it
y
g
ap

EE364b, Stanford University 26


