Truncated Newton Method

- approximate Newton methods
- truncated Newton methods
- truncated Newton interior-point methods

Newton's method

- minimize convex $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$
- Newton step Δx_{nt} found from (SPD) Newton system

$$
\nabla^{2} f(x) \Delta x_{\mathrm{nt}}=-\nabla f(x)
$$

using Cholesky factorization

- backtracking line search on function value $f(x)$ or norm of gradient $\|\nabla f(x)\|$
- stopping criterion based on Newton decrement $\lambda^{2} / 2=-\nabla f(x)^{T} \Delta x_{\mathrm{nt}}$ or norm of gradient $\|\nabla f(x)\|$

Approximate or inexact Newton methods

- use as search direction an approximate solution Δx of Newton system
- idea: no need to compute $\Delta x_{\text {nt }}$ exactly; only need a good enough search direction
- number of iterations may increase, but if effort per iteration is smaller than for Newton, we win
- examples:
- solve $\hat{H} \Delta x=-\nabla f(x)$, where \hat{H} is diagonal or band of $\nabla^{2} f(x)$
- factor $\nabla^{2} f(x)$ every k iterations and use most recent factorization

Truncated Newton methods

- approximately solve Newton system using CG or PCG, terminating (sometimes way) early
- also called Newton-iterative methods; related to limited memory Newton (or BFGS)
- total effort is measured by cumulative sum of CG steps done
- for good performance, need to tune CG stopping criterion, to use just enough steps to get a good enough search direction
- less reliable than Newton's method, but (with good tuning, good preconditioner, fast $z \rightarrow \nabla^{2} f(x) z$ method, and some luck) can handle very large problems

Truncated Newton method

- backtracking line search on $\|\nabla f(x)\|$
- typical CG termination rule: stop after $N_{\text {max }}$ steps or

$$
\eta=\frac{\left\|\nabla^{2} f(x) \Delta x+\nabla f(x)\right\|}{\|\nabla f(x)\|} \leq \epsilon_{\mathrm{pcg}}
$$

- with simple rules, $N_{\text {max }}, \epsilon_{\mathrm{pcg}}$ are constant
- more sophisticated rules adapt $N_{\text {max }}$ or ϵ_{pcg} as algorithm proceeds (based on, e.g., value of $\|\nabla f(x)\|$, or progress in reducing $\|\nabla f(x)\|$) $\eta=\min \left(0.1,\|\nabla f(x)\|^{1 / 2}\right)$ guarantees (with large $N_{\max }$) superlinear convergence

CG initialization

- we use CG to approximately solve $\nabla^{2} f(x) \Delta x+\nabla f(x)=0$
- if we initialize CG with $\Delta x=0$
- after one CG step, Δx points in direction of negative gradient (so, $N_{\text {max }}=1$ results in gradient method)
- all CG iterates are descent directions for f
- another choice: initialize with $\Delta x=\Delta x_{\mathrm{prev}}$, the previous search step
- initial CG iterates need not be descent directions
- but can give advantage when $N_{\text {max }}$ is small
- simple scheme: if $\Delta x_{\text {prev }}$ is a descent direction ($\left.\Delta x_{\text {prev }}^{T} \nabla f(x)<0\right)$ start CG from

$$
\Delta x=\frac{-\Delta x_{\text {prev }}^{T} \nabla f(x)}{\Delta x_{\text {prev }}^{T} \nabla^{2} f(x) \Delta x_{\text {prev }}} \Delta x_{\text {prev }}
$$

otherwise start CG from $\Delta x=0$

Example

ℓ_{2}-regularized logistic regression

$$
\operatorname{minimize} \quad f(w)=(1 / m) \sum_{i=1}^{m} \log \left(1+\exp \left(-b_{i} x_{i}^{T} w\right)\right)+\sum_{i=1}^{n} \lambda_{i} w_{i}^{2}
$$

- variable is $w \in \mathbf{R}^{n}$
- problem data are $x_{i} \in \mathbf{R}^{n}, b_{i} \in\{-1,1\}, i=1, \ldots, m$, and regularization parameter $\lambda \in \mathbf{R}_{+}^{n}$
- n is number of features; m is number of samples/observations

Hessian and gradient

$$
\nabla^{2} f(w)=A^{T} D A+2 \Lambda, \quad \nabla f(w)=A^{T} g+2 \Lambda w
$$

where

$$
\begin{gathered}
A=\left[b_{1} x_{1} \cdots b_{m} x_{m}\right]^{T}, \quad D=\operatorname{diag}(h), \quad \Lambda=\operatorname{diag}(\lambda) \\
g_{i}=-(1 / m) /\left(1+\exp (A w)_{i}\right) \\
h_{i}=(1 / m) \exp (A w)_{i} /\left(1+\exp (A w)_{i}\right)^{2}
\end{gathered}
$$

we never form $\nabla^{2} f(w)$; we carry out multiplication $z \rightarrow \nabla^{2} f(w) z$ as

$$
\nabla^{2} f(w) z=\left(A^{T} D A+2 \Lambda\right) z=A^{T}(D(A z))+2 \Lambda z
$$

Problem instance

- $n=10000$ features, $m=20000$ samples (10000 each with $b_{i}= \pm 1$)
- x_{i} have random sparsity pattern, with around 10 nonzero entries
- nonzero entries in x_{i} drawn from $\mathcal{N}\left(b_{i}, 1\right)$
- $\lambda_{i}=10^{-8}$
- around 500000 nonzeros in $\nabla^{2} f$, and 30M nonzeros in Cholesky factor

Methods

- Newton (using Cholesky factorization of $\nabla^{2} f(w)$)
- truncated Newton with $\epsilon_{\mathrm{cg}}=10^{-4}, N_{\text {max }}=10$
- truncated Newton with $\epsilon_{\mathrm{cg}}=10^{-4}, N_{\text {max }}=50$
- truncated Newton with $\epsilon_{\mathrm{cg}}=10^{-4}, N_{\max }=250$

Convergence versus iterations

Convergence versus cumulative CG steps

- convergence of exact Newton, and truncated Newton methods with $N_{\max }=50$ and 250 essentially the same, in terms of iterations
- in terms elapsed time (and memory!), truncated Newton methods far better than Newton
- truncated Newton with $N_{\max }=10$ seems to jam near $\|\nabla f(w)\| \approx 10^{-6}$
- times (on AMD270 2GHz, 12GB, Linux) in sec:

method	$\\|\nabla f(w)\\| \leq 10^{-5}$	$\\|\nabla f(w)\\| \leq 10^{-8}$
Newton	1600	2600
cg 10	4	-
cg 50	17	26
cg 250	35	54

Truncated PCG Newton method

approximate search direction found via diagonally preconditioned PCG

- diagonal preconditioning allows $N_{\max }=10$ to achieve high accuracy; speeds up other truncated Newton methods
- times:

method	$\\|\nabla f(w)\\| \leq 10^{-5}$	$\\|\nabla f(w)\\| \leq 10^{-8}$
Newton	1600	2600
cg 10	4	-
cg 50	17	26
cg 250	35	54
pcg 10	3	5
pcg 50	13	24
pcg 250	23	34

- speedups of $1600: 3,2600: 5$ are not bad (and we really didn't do much tuning ...)

Extensions

- can extend to (infeasible start) Newton's method with equality constraints
- since we don't use exact Newton step, equality constraints not guaranteed to hold after finite number of steps (but $\left\|r_{p}\right\| \rightarrow 0$)
- can use for barrier, primal-dual methods

Truncated Newton interior-point methods

- use truncated Newton method to compute search direction in interior-point method
- tuning PCG parameters for optimal performance on a given problem class is tricky, since linear systems in interior-point methods often become ill-conditioned as algorithm proceeds
- but can work well (with luck, good preconditioner)

Network rate control

rate control problem

$$
\begin{array}{ll}
\operatorname{minimize} & -U(f)=-\sum_{j=1}^{n} \log f_{j} \\
\text { subject to } & R f \preceq c
\end{array}
$$

with variable f

- $f \in \mathbf{R}_{++}^{n}$ is vector of flow rates
- $U(f)=\sum_{j=1}^{n} \log f_{j}$ is flow utility
- $R \in \mathbf{R}^{m \times n}$ is route matrix $\left(R_{i j} \in\{0,1\}\right)$
- $c \in \mathbf{R}^{m}$ is vector of link capacities

Dual rate control problem

dual problem

$$
\begin{array}{ll}
\text { maximize } & g(\lambda)=n-c^{T} \lambda+\sum_{i=1}^{m} \log \left(r_{i}^{T} \lambda\right) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

with variable $\lambda \in \mathbf{R}^{m}$
duality gap

$$
\begin{aligned}
\eta & =-U(f)-g(\lambda) \\
& =-\sum_{j=1}^{n} \log f_{j}-n+c^{T} \lambda-\sum_{i=1}^{m} \log \left(r_{i}^{T} \lambda\right)
\end{aligned}
$$

Primal-dual search direction (BV §11.7)

primal-dual search direction $\Delta f, \Delta \lambda$ given by

$$
\left(D_{1}+R^{T} D_{2} R\right) \Delta f=g_{1}-(1 / t) R^{T} g_{2}, \quad \Delta \lambda=D_{2} R \Delta f-\lambda+(1 / t) g_{2}
$$

where $s=c-R f$,

$$
\begin{gathered}
D_{1}=\operatorname{diag}\left(1 / f_{1}^{2}, \ldots, 1 / f_{n}^{2}\right), \quad D_{2}=\operatorname{diag}\left(\lambda_{1} / s_{1}, \ldots, \lambda_{m} / s_{m}\right) \\
g_{1}=\left(1 / f_{1}, \ldots, 1 / f_{n}\right), \quad g_{2}=\left(1 / s_{1}, \ldots, 1 / s_{m}\right)
\end{gathered}
$$

Truncated Newton primal-dual algorithm

primal-dual residual:

$$
r=\left(r_{\text {dual }}, r_{\text {cent }}\right)=\left(-g_{2}+R^{T} \lambda, \operatorname{diag}(\lambda) s-(1 / t) \mathbf{1}\right)
$$

given f with $R f \prec c ; \lambda \succ 0$
while $\eta / g(\lambda)>\epsilon$

$$
t:=\mu m / \eta
$$

compute Δf using PCG as approximate solution of

$$
\left(D_{1}+R^{T} D_{2} R\right) \Delta f=g_{1}-(1 / t) R^{T} g_{2}
$$

$\Delta \lambda:=D_{2} R \Delta f-\lambda+(1 / t) g_{2}$
carry out line search on $\|r\|_{2}$, and update:

$$
f:=f+\gamma \Delta f, \lambda:=\lambda+\gamma \Delta \lambda
$$

- problem instance
$-m=200000$ links, $n=100000$ flows
- average of 12 links per flow, 6 flows per link
- capacities random, uniform on $[0.1,1]$
- algorithm parameters
- truncated Newton with $\epsilon_{\mathrm{cg}}=\min (0.1, \eta / g(\lambda)), N_{\max }=200$ ($N_{\max }$ never reached)
- diagonal preconditioner
- warm start
- $\mu=2$
$-\epsilon=0.001$ (i.e., solve to guaranteed 0.1% suboptimality)

Primal and dual objective evolution

Relative duality gap evolution

Primal and dual objective evolution ($n=10^{6}$)

Relative duality gap evolution ($n=10^{6}$)

