Truncated Newton Method

e approximate Newton methods
e truncated Newton methods

e truncated Newton interior-point methods
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Newton’s method
e minimize convex f : R" — R
e Newton step Az, found from (SPD) Newton system
V2f(x)Azy = —Vf(2)
using Cholesky factorization

e backtracking line search on function value f(x) or norm of gradient

IV f()]

e stopping criterion based on Newton decrement \?/2 = —V f(z) Az
or norm of gradient ||V f(x)]|
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Approximate or inexact Newton methods

e use as search direction an approximate solution Ax of Newton system

e idea: no need to compute Az, exactly; only need a good enough
search direction

e number of iterations may increase, but if effort per iteration is smaller
than for Newton, we win

e examples:

— solve HAz = —V f(z), where H is diagonal or band of V2f(z)
— factor V2 f(x) every k iterations and use most recent factorization
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Truncated Newton methods

e approximately solve Newton system using CG or PCG, terminating
(sometimes way) early

e also called Newton-iterative methods; related to limited memory
Newton (or BFGS)

e total effort is measured by cumulative sum of CG steps done

e for good performance, need to tune CG stopping criterion, to use just
enough steps to get a good enough search direction

e less reliable than Newton's method, but (with good tuning, good

preconditioner, fast z — V?f(x)z method, and some luck) can handle
very large problems
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Truncated Newton method
e backtracking line search on ||V f(x)]|

e typical CG termination rule: stop after V. steps or

IV @A+ Vi@ _
NG

e with simple rules, Ny ax, €pce are constant

e more sophisticated rules adapt Ny,ax Or €pce as algorithm proceeds
(based on, e.g., value of |V f(x)]|, or progress in reducing ||V f(z)||)

n = min(0.1, ||V f(x)]|'/?) guarantees (with large Ny,.y) superlinear
convergence
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CG initialization

e we use CG to approximately solve V?f(z)Az + Vf(z) =0

e if we initialize CG with Az =0

— after one CG step, Az points in direction of negative gradient
(s0, Nmax = 1 results in gradient method)
— all CG iterates are descent directions for f

e another choice: initialize with Ax = Ax ey, the previous search step

— initial CG iterates need not be descent directions
— but can give advantage when Ny, is small

EE364b, Stanford University



e simple scheme: if Az,ey is a descent direction (Az! ..,V f(z) < 0)
start CG from

Axq _A:Cgrevvf(x)

N V2f(x)Axprey

prev

Ai’jprev

otherwise start CG from Az =0
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Example

¢o-regularized logistic regression

minimize f(w) = (1/m) Y i, log (1 + exp(—biz} w)) + > i hiw?

e variable is w € R"

e problem data are z; € R", b, € {—1,1},i=1,...,m, and
regularization parameter A € R}

e 1 is number of features; m is number of samples/observations
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Hessian and gradient

V2f(w) = ATDA+2A,  Vf(w)=ATg+2Aw
where

A=[bixy - bpzrm|’, D =diag(h), A = diag(\)

gi = —(1/m)/(1+ exp(Aw);)
h; = (1/m) exp(Aw)Z-/(l—I—eX]D(Aw)z')2

we never form V2 f(w); we carry out multiplication z — V2f(w)z as

V2f(w)z = (A"DA+2A) 2 = A" (D(Az)) + 2Az
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Problem instance

e n = 10000 features, m = 20000 samples (10000 each with b; = £1)
e 1; have random sparsity pattern, with around 10 nonzero entries

e nonzero entries in x; drawn from A (b;, 1)
o )\, = 10~8

e around 500000 nonzeros in V2f, and 30M nonzeros in Cholesky factor
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Methods

e Newton (using Cholesky factorization of V2f(w))
e truncated Newton with €., = 107%, Nypax = 10
e truncated Newton with €;; = 1074, Nyax = 50

e truncated Newton with €., = 107%, Nppax = 250
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Convergence versus iterations
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Convergence versus cumulative CG steps
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e convergence of exact Newton, and truncated Newton methods with
Nmax = 50 and 250 essentially the same, in terms of iterations

e in terms elapsed time (and memory!), truncated Newton methods far
better than Newton

e truncated Newton with N,., = 10 seems to jam near ||V f(w)|| ~ 107°

e times (on AMD270 2GHz, 12GB, Linux) in sec:

method | [Vf(w)| <107° [[Vf(w)[| <107°
Newton 1600 2600

cg 10 4 —

cg 50 17 26

cg 250 35 54
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Truncated PCG Newton method

approximate search direction found via diagonally preconditioned PCG

IV £l
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e diagonal preconditioning allows N,,.« = 10 to achieve high accuracy;
speeds up other truncated Newton methods

e times:

method | [[Vf(w)[| <107 [[Vf(w)|| <107°
Newton 1600 2600

cg 10 4 —

cg 50 17 26

cg 250 35 54

pcg 10 3 5

pcg 50 13 24

pcg 250 23 34

e speedups of 1600:3, 2600:5 are not bad
(and we really didn't do much tuning . . . )
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Extensions

e can extend to (infeasible start) Newton's method with equality
constraints

e since we don't use exact Newton step, equality constraints not
guaranteed to hold after finite number of steps (but ||7,| — 0)

e can use for barrier, primal-dual methods
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Truncated Newton interior-point methods

e use truncated Newton method to compute search direction in
interior-point method

e tuning PCG parameters for optimal performance on a given problem
class is tricky, since linear systems in interior-point methods often
become ill-conditioned as algorithm proceeds

e but can work well (with luck, good preconditioner)
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Network rate control

rate control problem

minimize —U(f) = — 2;’211(% Ik
subject to Rf <¢

with variable f

o f &Rl is vector of flow rates
o U(f)=>"_,log f;is flow utility
e R R™*" is route matrix (R;; € {0,1})

e ¢ € R™ is vector of link capacities
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Dual rate control problem

dual problem

maximize g(A\) =n—ctA+> 7" log(r! )
subject to A >0

with variable A € R™
duality gap

n = =U(f)—g\)

— —Zlogfj —n+clt - Zlog(riT)\)
j=1 i=1
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Primal-dual search direction (BV §11.7)

primal-dual search direction Af, A\ given by
(D1 + RT'DyR)ASf = g1 — (1/t)RY ¢o, AN = DoRAF — X+ (1/t)gs
where s = ¢ — Rf,
D, =diag(1/f?,...,1/f%), D> = diag(A1/s1,- -5 Am/Sm)

glz(l/fl,...,l/fn), 92:(1/81,,1/Sm)
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Truncated Newton primal-dual algorithm

primal-dual residual:

r = (Fdual, Teent) = (—g2 + RN, diag(\)s — (1/t)1)

given f with Rf <c; A >0
while 7/g(\) > €
t:=pum/n
compute A f using PCG as approximate solution of
(Dl + RTDQR)Af = (g1 — (1/t)RT92
AN = DQRAf — A + (1/75)92
carry out line search on ||r||2, and update:
fi=f+~vAf A= A+~vAN
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e problem instance

— m = 200000 links, n = 100000 flows
— average of 12 links per flow, 6 flows per link
— capacities random, uniform on [0.1, 1]

e algorithm parameters

— truncated Newton with €., = min(0.1,17/g(\)), Nmax = 200
(Nmax never reached)

— diagonal preconditioner

— warm start

—u=2

— ¢ =0.001 (i.e., solve to guaranteed 0.1% suboptimality)
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Primal and dual objective evolution
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Relative duality gap evolution
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Primal and dual objective evolution (n = 10°)
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Relative duality gap evolution (n = 10°)
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