Truncated Newton Method

- approximate Newton methods
- truncated Newton methods
- truncated Newton interior-point methods

EE364b, Stanford University

Newton's method

- minimize convex $f : \mathbf{R}^n \to \mathbf{R}$
- Newton step Δx_{nt} found from (SPD) Newton system

$$\nabla^2 f(x) \Delta x_{\rm nt} = -\nabla f(x)$$

using Cholesky factorization

- backtracking line search on function value f(x) or norm of gradient $\|\nabla f(x)\|$
- stopping criterion based on Newton decrement $\lambda^2/2 = -\nabla f(x)^T \Delta x_{\rm nt}$ or norm of gradient $\|\nabla f(x)\|$

Approximate or inexact Newton methods

- use as search direction an *approximate solution* Δx of Newton system
- idea: no need to compute $\Delta x_{\rm nt}$ exactly; only need a good enough search direction
- number of iterations may increase, but if effort per iteration is smaller than for Newton, we win
- examples:
 - solve $\hat{H}\Delta x = -\nabla f(x)$, where \hat{H} is diagonal or band of $\nabla^2 f(x)$
 - factor $\nabla^2 f(x)$ every k iterations and use most recent factorization

Truncated Newton methods

- approximately solve Newton system using CG or PCG, terminating (sometimes way) early
- also called *Newton-iterative methods*; related to limited memory Newton (or BFGS)
- total effort is measured by cumulative sum of CG steps done
- for good performance, need to tune CG stopping criterion, to use just enough steps to get a good enough search direction
- less reliable than Newton's method, but (with good tuning, good preconditioner, fast $z \to \nabla^2 f(x)z$ method, and some luck) can handle very large problems

Truncated Newton method

- backtracking line search on $\|\nabla f(x)\|$
- typical CG termination rule: stop after $N_{\rm max}$ steps or

$$\eta = \frac{\|\nabla^2 f(x)\Delta x + \nabla f(x)\|}{\|\nabla f(x)\|} \le \epsilon_{\text{pcg}}$$

- ullet with simple rules, $N_{\rm max}$, $\epsilon_{\rm pcg}$ are constant
- more sophisticated rules adapt N_{\max} or ϵ_{pcg} as algorithm proceeds (based on, e.g., value of $\|\nabla f(x)\|$, or progress in reducing $\|\nabla f(x)\|$) $\eta = \min(0.1, \|\nabla f(x)\|^{1/2})$ guarantees (with large N_{\max}) superlinear convergence

CG initialization

- we use CG to approximately solve $\nabla^2 f(x)\Delta x + \nabla f(x) = 0$
- if we initialize CG with $\Delta x=0$
 - after one CG step, Δx points in direction of negative gradient (so, $N_{\text{max}} = 1$ results in gradient method)
 - all CG iterates are descent directions for \boldsymbol{f}
- another choice: initialize with $\Delta x = \Delta x_{\rm prev}$, the previous search step
 - initial CG iterates need not be descent directions
 - but can give advantage when $N_{\rm max}$ is small

• simple scheme: if $\Delta x_{\rm prev}$ is a descent direction ($\Delta x_{\rm prev}^T \nabla f(x) < 0$) start CG from

$$\Delta x = \frac{-\Delta x_{\text{prev}}^T \nabla f(x)}{\Delta x_{\text{prev}}^T \nabla^2 f(x) \Delta x_{\text{prev}}} \Delta x_{\text{prev}}$$

otherwise start CG from $\Delta x = 0$

Example

 $\ell_2\text{-}\mathsf{regularized}$ logistic regression

minimize $f(w) = (1/m) \sum_{i=1}^{m} \log (1 + \exp(-b_i x_i^T w)) + \sum_{i=1}^{n} \lambda_i w_i^2$

• variable is $w \in \mathbf{R}^n$

- problem data are $x_i \in \mathbf{R}^n$, $b_i \in \{-1, 1\}$, $i = 1, \ldots, m$, and regularization parameter $\lambda \in \mathbf{R}^n_+$
- n is number of features; m is number of samples/observations

Hessian and gradient

 $\nabla^2 f(w) = A^T D A + 2\Lambda, \qquad \nabla f(w) = A^T g + 2\Lambda w$

where

$$A = [b_1 x_1 \cdots b_m x_m]^T, \quad D = \mathbf{diag}(h), \quad \Lambda = \mathbf{diag}(\lambda)$$

$$g_i = -(1/m)/(1 + \exp(Aw)_i)$$

 $h_i = (1/m) \exp(Aw)_i/(1 + \exp(Aw)_i)^2$

we never form $\nabla^2 f(w);$ we carry out multiplication $z \to \nabla^2 f(w) z$ as

$$\nabla^2 f(w)z = \left(A^T D A + 2\Lambda\right)z = A^T \left(D(Az)\right) + 2\Lambda z$$

EE364b, Stanford University

Problem instance

- n = 10000 features, m = 20000 samples (10000 each with $b_i = \pm 1$)
- x_i have random sparsity pattern, with around 10 nonzero entries
- nonzero entries in x_i drawn from $\mathcal{N}(b_i, 1)$
- $\lambda_i = 10^{-8}$
- around 500000 nonzeros in $\nabla^2 f$, and 30M nonzeros in Cholesky factor

Methods

- Newton (using Cholesky factorization of $\nabla^2 f(w)$)
- truncated Newton with $\epsilon_{\rm cg}=10^{-4}$, $N_{\rm max}=10$
- truncated Newton with $\epsilon_{\rm cg}=10^{-4}$, $N_{\rm max}=50$
- truncated Newton with $\epsilon_{\rm cg}=10^{-4}$, $N_{\rm max}=250$

Convergence versus iterations

Convergence versus cumulative CG steps

- convergence of exact Newton, and truncated Newton methods with $N_{\rm max} = 50$ and 250 essentially the same, in terms of iterations
- in terms elapsed time (and memory!), truncated Newton methods far better than Newton
- truncated Newton with $N_{\rm max} = 10$ seems to jam near $\|\nabla f(w)\| \approx 10^{-6}$
- times (on AMD270 2GHz, 12GB, Linux) in sec:

method	$\left\ \left\ \nabla f(w) \right\ \le 10^{-5} \right\ $	$\ \nabla f(w)\ \leq 10^{-8}$
Newton	1600	2600
cg 10	4	
cg 50	17	26
cg 250	35	54

Truncated PCG Newton method

approximate search direction found via diagonally preconditioned PCG

- diagonal preconditioning allows $N_{\rm max} = 10$ to achieve high accuracy; speeds up other truncated Newton methods
- times:

method	$\left\ \nabla f(w)\right\ \le 10^{-5}$	$\ \nabla f(w)\ \le 10^{-8}$
Newton	1600	2600
cg 10	4	
cg 50	17	26
cg 250	35	54
pcg 10	3	5
pcg 50	13	24
pcg 250	23	34

• speedups of 1600:3, 2600:5 are not bad (and we really didn't do much tuning . . .)

Extensions

- can extend to (infeasible start) Newton's method with equality constraints
- since we don't use exact Newton step, equality constraints not guaranteed to hold after finite number of steps (but $||r_p|| \rightarrow 0$)
- can use for barrier, primal-dual methods

Truncated Newton interior-point methods

- use truncated Newton method to compute search direction in interior-point method
- tuning PCG parameters for optimal performance on a given problem class is tricky, since linear systems in interior-point methods often become ill-conditioned as algorithm proceeds
- but can work well (with luck, good preconditioner)

Network rate control

rate control problem

minimize
$$-U(f) = -\sum_{j=1}^{n} \log f_j$$

subject to $Rf \leq c$

with variable f

- $f \in \mathbf{R}_{++}^n$ is vector of flow rates
- $U(f) = \sum_{j=1}^{n} \log f_j$ is flow utility
- $R \in \mathbf{R}^{m \times n}$ is route matrix $(R_{ij} \in \{0, 1\})$
- $c \in \mathbf{R}^m$ is vector of link capacities

Dual rate control problem

dual problem

maximize
$$g(\lambda) = n - c^T \lambda + \sum_{i=1}^m \log(r_i^T \lambda)$$

subject to $\lambda \succeq 0$

with variable
$$\lambda \in \mathbf{R}^m$$
 duality gap

$$\eta = -U(f) - g(\lambda)$$
$$= -\sum_{j=1}^{n} \log f_j - n + c^T \lambda - \sum_{i=1}^{m} \log(r_i^T \lambda)$$

EE364b, Stanford University

Primal-dual search direction (BV §11.7)

primal-dual search direction Δf , $\Delta \lambda$ given by

 $(D_1+R^TD_2R)\Delta f=g_1-(1/t)R^Tg_2,\qquad \Delta\lambda=D_2R\Delta f-\lambda+(1/t)g_2$ where s=c-Rf,

$$D_1 = \operatorname{diag}(1/f_1^2, \dots, 1/f_n^2), \qquad D_2 = \operatorname{diag}(\lambda_1/s_1, \dots, \lambda_m/s_m)$$
$$g_1 = (1/f_1, \dots, 1/f_n), \qquad g_2 = (1/s_1, \dots, 1/s_m)$$

Truncated Newton primal-dual algorithm

primal-dual residual:

$$r = (r_{\text{dual}}, r_{\text{cent}}) = (-g_2 + R^T \lambda, \operatorname{diag}(\lambda)s - (1/t)\mathbf{1})$$

given
$$f$$
 with $Rf \prec c$; $\lambda \succ 0$
while $\eta/g(\lambda) > \epsilon$
 $t := \mu m/\eta$
compute Δf using PCG as approximate solution of
 $(D_1 + R^T D_2 R) \Delta f = g_1 - (1/t) R^T g_2$
 $\Delta \lambda := D_2 R \Delta f - \lambda + (1/t) g_2$
carry out line search on $||r||_2$, and update:
 $f := f + \gamma \Delta f$, $\lambda := \lambda + \gamma \Delta \lambda$

EE364b, Stanford University

- problem instance
 - m=200000 links, n=100000 flows
 - average of 12 links per flow, 6 flows per link
 - capacities random, uniform on $\left[0.1,1\right]$
- algorithm parameters
 - truncated Newton with $\epsilon_{cg} = \min(0.1, \eta/g(\lambda))$, $N_{max} = 200$ (N_{max} never reached)
 - diagonal preconditioner
 - warm start

$$-\mu=2$$

- $\epsilon = 0.001$ (*i.e.*, solve to guaranteed 0.1% suboptimality)

Relative duality gap evolution

Primal and dual objective evolution $(n = 10^6)$

Relative duality gap evolution $(n = 10^6)$

