Subgradients

- subgradients
- strong and weak subgradient calculus
- optimality conditions via subgradients
- directional derivatives
- generalized subdifferential for non-convex functions

Basic inequality

recall basic inequality for convex differentiable f :

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)
$$

- first-order approximation of f at x is global underestimator
- $(\nabla f(x),-1)$ supports epi f at $(x, f(x))$
what if f is not differentiable?

Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

$$
f(y) \geq f(x)+g^{T}(y-x) \quad \text { for all } y
$$

g_{2}, g_{3} are subgradients at $x_{2} ; g_{1}$ is a subgradient at x_{1}

- g is a subgradient of f at x iff $(g,-1)$ supports epi f at $(x, f(x))$
- g is a subgradient iff $f(x)+g^{T}(y-x)$ is a global (affine) underestimator of f
- if f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x
subgradients come up in several contexts:
- algorithms for nondifferentiable convex optimization
- convex analysis, e.g., optimality conditions, duality for nondifferentiable problems
(if $f(y) \leq f(x)+g^{T}(y-x)$ for all y, then g is a supergradient)

Example

$f=\max \left\{f_{1}, f_{2}\right\}$, with f_{1}, f_{2} convex and differentiable

- $f_{1}\left(x_{0}\right)>f_{2}\left(x_{0}\right)$: unique subgradient $g=\nabla f_{1}\left(x_{0}\right)$
- $f_{2}\left(x_{0}\right)>f_{1}\left(x_{0}\right)$: unique subgradient $g=\nabla f_{2}\left(x_{0}\right)$
- $f_{1}\left(x_{0}\right)=f_{2}\left(x_{0}\right)$: subgradients form a line segment $\left[\nabla f_{1}\left(x_{0}\right), \nabla f_{2}\left(x_{0}\right)\right]$

Subdifferential

- set of all subgradients of f at x is called the subdifferential of f at x, denoted $\partial f(x)$
- $\partial f(x)$ is a closed convex set (can be empty)
if f is convex,
- $\partial f(x)$ is nonempty, for $x \in \operatorname{relint} \operatorname{dom} f$
- $\partial f(x)=\{\nabla f(x)\}$, if f is differentiable at x
- if $\partial f(x)=\{g\}$, then f is differentiable at x and $g=\nabla f(x)$

Example

$$
f(x)=|x|
$$

righthand plot shows $\bigcup\{(x, g) \mid x \in \mathbf{R}, g \in \partial f(x)\}$

Subgradient calculus

- weak subgradient calculus: formulas for finding one subgradient $g \in \partial f(x)$
- strong subgradient calculus: formulas for finding the whole subdifferential $\partial f(x)$, i.e., all subgradients of f at x
- many algorithms for nondifferentiable convex optimization require only one subgradient at each step, so weak calculus suffices
- some algorithms, optimality conditions, etc., need whole subdifferential
- roughly speaking: if you can compute $f(x)$, you can usually compute a $g \in \partial f(x)$
- we'll assume that f is convex, and $x \in \operatorname{relint} \operatorname{dom} f$

Some basic rules

- $\partial f(x)=\{\nabla f(x)\}$ if f is differentiable at x
- scaling: $\partial(\alpha f)=\alpha \partial f$ (if $\alpha>0$)
- addition: $\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}$ (RHS is addition of point-to-set mappings)
- affine transformation of variables: if $g(x)=f(A x+b)$, then $\partial g(x)=A^{T} \partial f(A x+b)$
- finite pointwise maximum: if $f=\max _{i=1, \ldots, m} f_{i}$, then

$$
\partial f(x)=\mathbf{C o} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

i.e., convex hull of union of subdifferentials of 'active' functions at x
$f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$, with f_{1}, \ldots, f_{m} differentiable

$$
\partial f(x)=\mathbf{C o}\left\{\nabla f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

example: $f(x)=\|x\|_{1}=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\}$

a

b

c

Pointwise supremum

if $f=\sup _{\alpha \in \mathcal{A}} f_{\alpha}$,

$$
\operatorname{cl~Co} \bigcup\left\{\partial f_{\beta}(x) \mid f_{\beta}(x)=f(x)\right\} \subseteq \partial f(x)
$$

(usually get equality, but requires some technical conditions to hold, e.g., \mathcal{A} compact, f_{α} cts in x and α)
roughly speaking, $\partial f(x)$ is closure of convex hull of union of subdifferentials of active functions

Weak rule for pointwise supremum

$$
f=\sup _{\alpha \in \mathcal{A}} f_{\alpha}
$$

- find any β for which $f_{\beta}(x)=f(x)$ (assuming supremum is achieved)
- choose any $g \in \partial f_{\beta}(x)$
- then, $g \in \partial f(x)$

example

$$
f(x)=\lambda_{\max }(A(x))=\sup _{\|y\|_{2}=1} y^{T} A(x) y
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}, A_{i} \in \mathbf{S}^{k}$

- f is pointwise supremum of $g_{y}(x)=y^{T} A(x) y$ over $\|y\|_{2}=1$
- g_{y} is affine in x, with $\nabla g_{y}(x)=\left(y^{T} A_{1} y, \ldots, y^{T} A_{n} y\right)$
- hence, $\partial f(x) \supseteq \mathbf{C o}\left\{\nabla g_{y} \mid A(x) y=\lambda_{\max }(A(x)) y,\|y\|_{2}=1\right\}$ (in fact equality holds here)
to find one subgradient at x, can choose any unit eigenvector y associated with $\lambda_{\max }(A(x))$; then

$$
\left(y^{T} A_{1} y, \ldots, y^{T} A_{n} y\right) \in \partial f(x)
$$

Expectation

- $f(x)=\mathbf{E} f(x, \omega)$, with f convex in x for each ω, ω a random variable
- for each ω, choose any $g_{\omega} \in \partial_{f}(x, \omega)$ (so $\omega \mapsto g_{\omega}$ is a function)
- then, $g=\mathbf{E} g_{\omega} \in \partial f(x)$

Monte Carlo method for (approximately) computing $f(x)$ and a $g \in \partial f(x)$:

- generate independent samples $\omega_{1}, \ldots, \omega_{K}$ from distribution of ω
- $f(x) \approx(1 / K) \sum_{i=1}^{K} f\left(x, \omega_{i}\right)$
- for each i choose $g_{i} \in \partial_{x} f\left(x, \omega_{i}\right)$
- $g=(1 / K) \sum_{i=1}^{K} g_{i}$ is an (approximate) subgradient (more on this later)

Minimization

define $g(y)$ as the optimal value of

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq y_{i}, \quad i=1, \ldots, m
\end{array}
$$

(f_{i} convex; variable x)
with λ^{\star} an optimal dual variable, we have

$$
g(z) \geq g(y)-\sum_{i=1}^{m} \lambda_{i}^{\star}\left(z_{i}-y_{i}\right)
$$

i.e., $-\lambda^{\star}$ is a subgradient of g at y

Composition

- $f(x)=h\left(f_{1}(x), \ldots, f_{k}(x)\right)$, with h convex nondecreasing, f_{i} convex
- find $q \in \partial h\left(f_{1}(x), \ldots, f_{k}(x)\right), g_{i} \in \partial f_{i}(x)$
- then, $g=q_{1} g_{1}+\cdots+q_{k} g_{k} \in \partial f(x)$
- reduces to standard formula for differentiable h, f_{i} proof:

$$
\begin{aligned}
f(y) & =h\left(f_{1}(y), \ldots, f_{k}(y)\right) \\
& \geq h\left(f_{1}(x)+g_{1}^{T}(y-x), \ldots, f_{k}(x)+g_{k}^{T}(y-x)\right) \\
& \geq h\left(f_{1}(x), \ldots, f_{k}(x)\right)+q^{T}\left(g_{1}^{T}(y-x), \ldots, g_{k}^{T}(y-x)\right) \\
& =f(x)+g^{T}(y-x)
\end{aligned}
$$

Subgradients and sublevel sets

g is a subgradient at x means $f(y) \geq f(x)+g^{T}(y-x)$
hence $f(y) \leq f(x) \Longrightarrow g^{T}(y-x) \leq 0$

- f differentiable at $x_{0}: \nabla f\left(x_{0}\right)$ is normal to the sublevel set $\left\{x \mid f(x) \leq f\left(x_{0}\right)\right\}$
- f nondifferentiable at x_{0} : subgradient defines a supporting hyperplane to sublevel set through x_{0}

Quasigradients

$g \neq 0$ is a quasigradient of f at x if

$$
g^{T}(y-x) \geq 0 \Longrightarrow f(y) \geq f(x)
$$

holds for all y

quasigradients at x form a cone

example:

$$
f(x)=\frac{a^{T} x+b}{c^{T} x+d}, \quad\left(\operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}\right)
$$

$g=a-f\left(x_{0}\right) c$ is a quasigradient at x_{0}
proof: for $c^{T} x+d>0$:

$$
a^{T}\left(x-x_{0}\right) \geq f\left(x_{0}\right) c^{T}\left(x-x_{0}\right) \Longrightarrow f(x) \geq f\left(x_{0}\right)
$$

example: degree of $a_{1}+a_{2} t+\cdots+a_{n} t^{n-1}$

$$
f(a)=\min \left\{i \mid a_{i+2}=\cdots=a_{n}=0\right\}
$$

$g=\operatorname{sign}\left(a_{k+1}\right) e_{k+1}($ with $k=f(a))$ is a quasigradient at $a \neq 0$
proof:

$$
g^{T}(b-a)=\operatorname{sign}\left(a_{k+1}\right) b_{k+1}-\left|a_{k+1}\right| \geq 0
$$

implies $b_{k+1} \neq 0$

Optimality conditions - unconstrained

recall for f convex, differentiable,

$$
f\left(x^{\star}\right)=\inf _{x} f(x) \Longleftrightarrow 0=\nabla f\left(x^{\star}\right)
$$

generalization to nondifferentiable convex f :

$$
f\left(x^{\star}\right)=\inf _{x} f(x) \Longleftrightarrow 0 \in \partial f\left(x^{\star}\right)
$$

\qquad
proof. by definition (!)

$$
f(y) \geq f\left(x^{\star}\right)+0^{T}\left(y-x^{\star}\right) \text { for all } y \Longleftrightarrow 0 \in \partial f\left(x^{\star}\right)
$$

. . . seems trivial but isn't

Example: piecewise linear minimization

$f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)$
x^{\star} minimizes $f \Longleftrightarrow 0 \in \partial f\left(x^{\star}\right)=\mathbf{C o}\left\{a_{i} \mid a_{i}^{T} x^{\star}+b_{i}=f\left(x^{\star}\right)\right\}$
\Longleftrightarrow there is a λ with

$$
\lambda \succeq 0, \quad \mathbf{1}^{T} \lambda=1, \quad \sum_{i=1}^{m} \lambda_{i} a_{i}=0
$$

where $\lambda_{i}=0$ if $a_{i}^{T} x^{\star}+b_{i}<f\left(x^{\star}\right)$
. . . but these are the KKT conditions for the epigraph form

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m
\end{array}
$$

with dual

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} \lambda \\
\text { subject to } & \lambda \succeq 0, \quad A^{T} \lambda=0, \quad \mathbf{1}^{T} \lambda=1
\end{array}
$$

Optimality conditions - constrained

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1, \ldots, m
\end{array}
$$

we assume

- f_{i} convex, defined on \mathbf{R}^{n} (hence subdifferentiable)
- strict feasibility (Slater's condition)
x^{\star} is primal optimal (λ^{\star} is dual optimal) iff

$$
\begin{aligned}
& f_{i}\left(x^{\star}\right) \leq 0, \quad \lambda_{i}^{\star} \geq 0 \\
& 0 \in \partial f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \partial f_{i}\left(x^{\star}\right) \\
& \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0
\end{aligned}
$$

. . . generalizes KKT for nondifferentiable f_{i}

Directional derivative

directional derivative of f at x in the direction δx is

$$
f^{\prime}(x ; \delta x) \triangleq \lim _{h \searrow 0} \frac{f(x+h \delta x)-f(x)}{h}
$$

can be $+\infty$ or $-\infty$

- f convex, finite near $x \Longrightarrow f^{\prime}(x ; \delta x)$ exists
- f differentiable at x if and only if, for some $g(=\nabla f(x))$ and all δx, $f^{\prime}(x ; \delta x)=g^{T} \delta x\left(\right.$ i.e., $f^{\prime}(x ; \delta x)$ is a linear function of $\left.\delta x\right)$

Directional derivative and subdifferential

general formula for convex $f: f^{\prime}(x ; \delta x)=\sup _{g \in \partial f(x)} g^{T} \delta x$

Descent directions

δx is a descent direction for f at x if $f^{\prime}(x ; \delta x)<0$ for differentiable $f, \delta x=-\nabla f(x)$ is always a descent direction (except when it is zero)
warning: for nondifferentiable (convex) functions, $\delta x=-g$, with $g \in \partial f(x)$, need not be descent direction
example: $f(x)=\left|x_{1}\right|+2\left|x_{2}\right|$

Subgradients and distance to sublevel sets

if f is convex, $f(z)<f(x), g \in \partial f(x)$, then for small $t>0$,

$$
\|x-t g-z\|_{2}<\|x-z\|_{2}
$$

thus $-g$ is descent direction for $\|x-z\|_{2}$, for any z with $f(z)<f(x)$ (e.g., x^{\star})
negative subgradient is descent direction for distance to optimal point

$$
\text { proof: } \quad \begin{aligned}
\|x-t g-z\|_{2}^{2} & =\|x-z\|_{2}^{2}-2 t g^{T}(x-z)+t^{2}\|g\|_{2}^{2} \\
& \leq\|x-z\|_{2}^{2}-2 t(f(x)-f(z))+t^{2}\|g\|_{2}^{2}
\end{aligned}
$$

Descent directions and optimality

fact: for f convex, finite near x, either

- $0 \in \partial f(x)$ (in which case x minimizes f), or
- there is a descent direction for f at x
i.e., x is optimal (minimizes f) iff there is no descent direction for f at x
proof: define $\delta x_{\mathrm{sd}}=-\underset{z \in \partial f(x)}{\operatorname{argmin}}\|z\|_{2}$
if $\delta x_{\text {sd }}=0$, then $0 \in \partial f(x)$, so x is optimal; otherwise
$f^{\prime}\left(x ; \delta x_{\text {sd }}\right)=-\left(\inf _{z \in \partial f(x)}\|z\|_{2}\right)^{2}<0$, so $\delta x_{\text {sd }}$ is a descent direction

idea extends to constrained case (feasible descent direction)

Non-convex and non-smooth functions

Clarke subdifferential of f at x is

$$
\partial_{C} f(x)=\mathbf{C o}\left\{\lim _{k \rightarrow \infty} \nabla f\left(x_{k}\right) \mid x_{k} \rightarrow x, \nabla f\left(x_{k}\right) \text { exists }\right\}
$$

- coincides with the ordinary subdifferential $\partial f(x)$ when f is convex

Local minima and maxima

$$
\begin{aligned}
& \qquad \operatorname{minimize} f(x) \\
& x \text { is a local minimum or maximum of } f(x) \quad \Longrightarrow 0 \in \partial_{C} f(x) .
\end{aligned}
$$

- $f(x)$ is assumed to be locally Lipschitz, non-convex and non-differentiable
- the reverse implication does not hold in general
- can be extended to constrained non-convex optimization

Example

$$
f_{1}(x)=\max \{-|x|, x-1\}
$$

- $x=0$ is a local maximum and $x=\frac{1}{2}$ is a local minimum
- $0 \in \partial_{C} f(0)=[-1,1]$ and $0 \in \partial_{C} f\left(\frac{1}{2}\right)=[-1,1]$

Clarke subdifferential of a sum

- weak sum rule holds: $\nabla_{C}\left(f_{1}+f_{2}\right) \subseteq \nabla_{C} f_{1}+\nabla_{C} f_{2}$
- equality holds when functions are subdifferentially regular (see lecture notes for the definition)

References

References

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[Cla90] F. H. Clarke. Optimization and nonsmooth analysis. SIAM, 1990.
[HUL93] J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I \& II. Springer, New York, 1993.
[LSM20] J. Li, A. M. So, and W. Ma. Understanding notions of stationarity in nonsmooth optimization: A guided tour of various constructions of subdifferential for nonsmooth functions. IEEE Signal Processing Magazine, 37(5):18-31, 2020.

