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Basic inequality

recall basic inequality for convex differentiable f :

f(y) ≥ f(x) +∇f(x)T (y − x)

• first-order approximation of f at x is global underestimator

• (∇f(x),−1) supports epi f at (x, f(x))

what if f is not differentiable?
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Subgradient of a function

g is a subgradient of f (not necessarily convex) at x if

f(y) ≥ f(x) + gT (y − x) for all y

x1 x2

g1

g2

g3

f

g2, g3 are subgradients at x2; g1 is a subgradient at x1
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• g is a subgradient of f at x iff (g,−1) supports epi f at (x, f(x))

• g is a subgradient iff f(x) + gT (y − x) is a global (affine)
underestimator of f

• if f is convex and differentiable, ∇f(x) is a subgradient of f at x

subgradients come up in several contexts:

• algorithms for nondifferentiable convex optimization

• convex analysis, e.g., optimality conditions, duality for nondifferentiable
problems

(if f(y) ≤ f(x) + gT (y − x) for all y, then g is a supergradient)
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Example

f = max{f1, f2}, with f1, f2 convex and differentiable

x

f1

f2

f

• f1(x0) > f2(x0): unique subgradient g = ∇f1(x0)

• f2(x0) > f1(x0): unique subgradient g = ∇f2(x0)

• f1(x0) = f2(x0): subgradients form a line segment [∇f1(x0),∇f2(x0)]
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Subdifferential

• set of all subgradients of f at x is called the subdifferential of f at x,
denoted ∂f(x)

• ∂f(x) is a closed convex set (can be empty)

if f is convex,

• ∂f(x) is nonempty, for x ∈ relintdom f

• ∂f(x) = {∇f(x)}, if f is differentiable at x

• if ∂f(x) = {g}, then f is differentiable at x and g = ∇f(x)
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Example

f(x) = |x|

x1

f

x2

s

y1

y2

righthand plot shows
⋃ {(x, g) | x ∈ R, g ∈ ∂f(x)}
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Subgradient calculus

• weak subgradient calculus: formulas for finding one subgradient
g ∈ ∂f(x)
• strong subgradient calculus: formulas for finding the whole

subdifferential ∂f(x), i.e., all subgradients of f at x

• many algorithms for nondifferentiable convex optimization require only
one subgradient at each step, so weak calculus suffices

• some algorithms, optimality conditions, etc., need whole subdifferential

• roughly speaking: if you can compute f(x), you can usually compute a
g ∈ ∂f(x)
• we’ll assume that f is convex, and x ∈ relintdom f
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Some basic rules

• ∂f(x) = {∇f(x)} if f is differentiable at x

• scaling: ∂(αf) = α∂f (if α > 0)

• addition: ∂(f1 + f2) = ∂f1 + ∂f2 (RHS is addition of point-to-set
mappings)

• affine transformation of variables: if g(x) = f(Ax+ b), then
∂g(x) = AT∂f(Ax+ b)

• finite pointwise maximum: if f = max
i=1,...,m

fi, then

∂f(x) = Co
⋃
{∂fi(x) | fi(x) = f(x)},

i.e., convex hull of union of subdifferentials of ‘active’ functions at x
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f(x) = max{f1(x), . . . , fm(x)}, with f1, . . . , fm differentiable

∂f(x) = Co{∇fi(x) | fi(x) = f(x)}

example: f(x) = ‖x‖1 = max{sTx | si ∈ {−1, 1}}

a2

b1

a b c

b2

b3

a3 a1

a4

c2
c3

c1

EE364b, Stanford University 9



Pointwise supremum

if f = sup
α∈A

fα,

clCo
⋃
{∂fβ(x) | fβ(x) = f(x)} ⊆ ∂f(x)

(usually get equality, but requires some technical conditions to hold, e.g.,
A compact, fα cts in x and α)

roughly speaking, ∂f(x) is closure of convex hull of union of
subdifferentials of active functions
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Weak rule for pointwise supremum

f = sup
α∈A

fα

• find any β for which fβ(x) = f(x) (assuming supremum is achieved)

• choose any g ∈ ∂fβ(x)
• then, g ∈ ∂f(x)

EE364b, Stanford University 11



example
f(x) = λmax(A(x)) = sup

‖y‖2=1

yTA(x)y

where A(x) = A0 + x1A1 + · · ·+ xnAn, Ai ∈ Sk

• f is pointwise supremum of gy(x) = yTA(x)y over ‖y‖2 = 1

• gy is affine in x, with ∇gy(x) = (yTA1y, . . . , y
TAny)

• hence, ∂f(x) ⊇ Co {∇gy | A(x)y = λmax(A(x))y, ‖y‖2 = 1}
(in fact equality holds here)

to find one subgradient at x, can choose any unit eigenvector y associated
with λmax(A(x)); then

(yTA1y, . . . , y
TAny) ∈ ∂f(x)
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Expectation

• f(x) = E f(x, ω), with f convex in x for each ω, ω a random variable

• for each ω, choose any gω ∈ ∂f(x, ω) (so ω 7→ gω is a function)

• then, g = E gω ∈ ∂f(x)

Monte Carlo method for (approximately) computing f(x) and a g ∈ ∂f(x):
• generate independent samples ω1, . . . , ωK from distribution of ω

• f(x) ≈ (1/K)
∑K
i=1 f(x, ωi)

• for each i choose gi ∈ ∂xf(x, ωi)
• g = (1/K)

∑K
i=1 gi is an (approximate) subgradient

(more on this later)
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Minimization

define g(y) as the optimal value of

minimize f0(x)
subject to fi(x) ≤ yi, i = 1, . . . ,m

(fi convex; variable x)

with λ? an optimal dual variable, we have

g(z) ≥ g(y)−
m∑

i=1

λ?i (zi − yi)

i.e., −λ? is a subgradient of g at y
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Composition

• f(x) = h(f1(x), . . . , fk(x)), with h convex nondecreasing, fi convex

• find q ∈ ∂h(f1(x), . . . , fk(x)), gi ∈ ∂fi(x)
• then, g = q1g1 + · · ·+ qkgk ∈ ∂f(x)
• reduces to standard formula for differentiable h, fi

proof:

f(y) = h(f1(y), . . . , fk(y))

≥ h(f1(x) + gT1 (y − x), . . . , fk(x) + gTk (y − x))
≥ h(f1(x), . . . , fk(x)) + qT (gT1 (y − x), . . . , gTk (y − x))
= f(x) + gT (y − x)
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Subgradients and sublevel sets

g is a subgradient at x means f(y) ≥ f(x) + gT (y − x)

hence f(y) ≤ f(x) =⇒ gT (y − x) ≤ 0

x1

x2

g2

t

g1
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• f differentiable at x0: ∇f(x0) is normal to the sublevel set
{x | f(x) ≤ f(x0)}

• f nondifferentiable at x0: subgradient defines a supporting hyperplane
to sublevel set through x0
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Quasigradients

g 6= 0 is a quasigradient of f at x if

gT (y − x) ≥ 0 =⇒ f(y) ≥ f(x)

holds for all y

S

g

x

quasigradients at x form a cone
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example:

f(x) =
aTx+ b

cTx+ d
, (dom f = {x | cTx+ d > 0})

g = a− f(x0)c is a quasigradient at x0

proof: for cTx+ d > 0:

aT (x− x0) ≥ f(x0)c
T (x− x0) =⇒ f(x) ≥ f(x0)
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example: degree of a1 + a2t+ · · ·+ ant
n−1

f(a) = min{i | ai+2 = · · · = an = 0}

g = sign(ak+1)ek+1 (with k = f(a)) is a quasigradient at a 6= 0

proof:
gT (b− a) = sign(ak+1)bk+1 − |ak+1| ≥ 0

implies bk+1 6= 0
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Optimality conditions — unconstrained

recall for f convex, differentiable,

f(x?) = inf
x
f(x)⇐⇒ 0 = ∇f(x?)

generalization to nondifferentiable convex f :

f(x?) = inf
x
f(x)⇐⇒ 0 ∈ ∂f(x?)
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f

x

0

x0

proof. by definition (!)

f(y) ≥ f(x?) + 0T (y − x?) for all y ⇐⇒ 0 ∈ ∂f(x?)

. . . seems trivial but isn’t
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Example: piecewise linear minimization

f(x) = maxi=1,...,m(a
T
i x+ bi)

x? minimizes f ⇐⇒ 0 ∈ ∂f(x?) = Co{ai | aTi x? + bi = f(x?)}

⇐⇒ there is a λ with

λ � 0, 1Tλ = 1,

m∑

i=1

λiai = 0

where λi = 0 if aTi x
? + bi < f(x?)
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. . . but these are the KKT conditions for the epigraph form

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m

with dual

maximize bTλ
subject to λ � 0, ATλ = 0, 1Tλ = 1
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Optimality conditions — constrained

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

we assume

• fi convex, defined on Rn (hence subdifferentiable)

• strict feasibility (Slater’s condition)

x? is primal optimal (λ? is dual optimal) iff

fi(x
?) ≤ 0, λ?i ≥ 0

0 ∈ ∂f0(x
?) +

∑m
i=1 λ

?
i∂fi(x

?)

λ?i fi(x
?) = 0

. . . generalizes KKT for nondifferentiable fi
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Directional derivative

directional derivative of f at x in the direction δx is

f ′(x; δx)
∆
= lim
h↘0

f(x+ hδx)− f(x)
h

can be +∞ or −∞

• f convex, finite near x =⇒ f ′(x; δx) exists

• f differentiable at x if and only if, for some g (= ∇f(x)) and all δx,
f ′(x; δx) = gTδx (i.e., f ′(x; δx) is a linear function of δx)
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Directional derivative and subdifferential

general formula for convex f : f ′(x; δx) = sup
g∈∂f(x)

gTδx

df

dx
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Descent directions

δx is a descent direction for f at x if f ′(x; δx) < 0

for differentiable f , δx = −∇f(x) is always a descent direction (except
when it is zero)

warning: for nondifferentiable (convex) functions, δx = −g, with
g ∈ ∂f(x), need not be descent direction

example: f(x) = |x1|+ 2|x2|
x1

l

x2

g
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Subgradients and distance to sublevel sets

if f is convex, f(z) < f(x), g ∈ ∂f(x), then for small t > 0,

‖x− tg − z‖2 < ‖x− z‖2

thus −g is descent direction for ‖x− z‖2, for any z with f(z) < f(x)
(e.g., x?)

negative subgradient is descent direction for distance to optimal point

proof: ‖x− tg − z‖22 = ‖x− z‖22 − 2tgT (x− z) + t2‖g‖22
≤ ‖x− z‖22 − 2t(f(x)− f(z)) + t2‖g‖22
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Descent directions and optimality

fact: for f convex, finite near x, either

• 0 ∈ ∂f(x) (in which case x minimizes f), or

• there is a descent direction for f at x

i.e., x is optimal (minimizes f) iff there is no descent direction for f at x

proof: define δxsd = − argmin
z∈∂f(x)

‖z‖2

if δxsd = 0, then 0 ∈ ∂f(x), so x is optimal; otherwise

f ′(x; δxsd) = −
(
infz∈∂f(x) ‖z‖2

)2
< 0, so δxsd is a descent direction
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df

dx

idea extends to constrained case (feasible descent direction)
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Non-convex and non-smooth functions

Clarke subdifferential of f at x is

∂Cf(x) = Co

{
lim
k→∞

∇f(xk) | xk → x, ∇f(xk) exists

}

• coincides with the ordinary subdifferential ∂f(x) when f is convex
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Local minima and maxima

minimize f(x)

x is a local minimum or maximum of f(x) =⇒ 0 ∈ ∂Cf(x).

• f(x) is assumed to be locally Lipschitz, non-convex and
non-differentiable

• the reverse implication does not hold in general

• can be extended to constrained non-convex optimization
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Example

10

differentiable or locally Lipschitz. Nevertheless, a formal
calculation using the definition of the Fréchet subdifferential
in (17) yields

b@IC(x) =

(
s 2 Rn :

sT (y � x)  o(ky � xk2)

for all y 2 C

)
(20)

if x 2 C and b@IC(x) = ; otherwise. The defining condition
of the set on the right-hand side of (20) can also be written as

lim sup
y!x, y2C

sT (y � x)

ky � xk2
 0.

The formula (20) for b@IC(x) is indeed valid and can be
established in a rigorous manner [20, Exercise 8.14]. The set
on the right-hand side of (20) is called the Fréchet normal
cone to C at x and is denoted by bNC(x); cf. the discussion
following (8). Now, using (18) and (20), we can compute the
limiting subdifferential of IC as

@IC(x) =

(
s 2 Rn :

9xk ! x and sk 2 bNC(xk)

such that sk ! s

)
; (21)

see [20, Definition 6.3 and Exercise 8.14]. Following the
terminology used above, the set on the right-hand side of (21)
is called the limiting normal cone of C at x and is denoted by
NC(x). Figures 5 and 6 show the Fréchet and limiting normal
cones of two closed non-convex sets. It is worth noting that the
two normal cones do not always coincide; see Figure 6, where
bNC(x) consists of the zero vector only and NC(x) consists

of the two rays emanating from x. In general, we always have
bNC(x) ✓ NC(x) [20, Proposition 6.5].

C
x

bNC(x) = NC(x)

Fig. 5. A closed non-convex set with bNC(x) = NC(x).

NC (x)

cNC (x) = {0}

C

x

Fig. 6. A closed non-convex set with bNC(x) ( NC(x).

A. Concepts of Stationarity

Armed with the above development, we are now ready to
address our primary goal of this paper, which is to introduce

and compare different stationarity concepts for non-convex
non-smooth optimization problems. To begin, consider Prob-
lem (9), where g : Rn ! R is a directionally differentiable
locally Lipschitz function and C ✓ Rn is a closed set. We
say that x̄ 2 Rn is a directional stationary (resp. limiting
stationary and Clarke stationary) point of Problem (9) if 0 2
b@(g+IC)(x) (resp. 0 2 @(g+IC)(x) and 0 2 @C(g+IC)(x)).
The following result gives a necessary condition for local
optimality of a feasible solution to Problem (9):

Fact 6 (cf. [20, Theorems 8.15 and 10.1, Corollary 6.29]) If
x̄ is a local minimum of (9), then x̄ is a directional stationary
(d-stationary) point of (9). If in addition g and IC are regular
at x̄, then

f 0(x̄, d) � 0 for all d 2 N �
C(x),

where

N �
C(x) =

�
d 2 Rn : sT d  0 for all s 2 NC(x)

 

is called the polar of NC(x).

Note that if x̄ is a d-stationary point of (9), then by Facts 5
and 6 it is also a limiting stationary (l-stationary) and Clarke
stationary (C-stationary) point of (9). In particular, we have
the following implications:

d-stationarity =) l-stationarity =) C-stationarity.

We now give two examples to show that the reverse implica-
tions need not hold in general; see [9].

�1

0

f2(x) = max{�x�1,min{�x,0}}

0

0.5

f1(x) = max{�|x|,x�1}

– For the univariate function f1 : R ! R, we
have @Cf1(0) = [�1, 1] and @f1(0) = {�1, 1}.
It follows that the point x̄ = 0 is C-stationary
but fails to be l-stationary. The unique l-stationary
point is x? = 0.5 and is also a local minimum.

– For the univariate function f2 : R ! R, we have
@f2(0) = {�1, 0} and b@f2(0) = ;. It follows that
the point x̄ = 0 is l-stationary but not d-stationary.
The unique d-stationary point is x? = �1 and is
also a local minimum.

The above discussion suggests that among the three notions
of stationarity, d-stationarity is the sharpest. However, the
development of algorithms for computing a d-stationary point
of the non-convex non-smooth optimization problem (9) is
still in the infancy stage. We will briefly discuss a recent
effort in this direction in the next sub-section and refer the
reader to [9], [56] for further reading. By contrast, under
the assumption that g + IC satisfies the so-called Kurdyka-
Łojasiewicz property, various algorithms will produce iterates

• x = 0 is a local maximum and x = 1
2 is a local minimum

• 0 ∈ ∂Cf(0) = [−1, 1] and 0 ∈ ∂Cf(1
2) = [−1, 1]
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Clarke subdifferential of a sum

5

In particular, we have

@Cf(x) =
�
s 2 Rn : sT d  f�(x, d) for all d 2 Rn

 
,

(12)
and the function d 7! f�(x, d) is finite sublinear for all
x 2 Rn. Additionally, we have f 0(x, d)  f�(x, d) if the
directional derivative of f exists.

We remark that a locally Lipschitz function may not be
directionally differentiable. In other words, the difference
quotient in (3) may not have a limit even though it is bounded
due to the Lipschitzian property. Here, we give an example to
showcase such possibility.

Consider the function

R 3 x 7! f(x) =

⇢
x sin(log( 1

x )) if x > 0,
0 otherwise.

It is clear that f is smooth on R \ {0}. Its derivative
at any x > 0 is given by f 0(x) = sin(log( 1

x )) �
cos(log( 1

x )), which is bounded by 2. Using this and
the structure of f , it can be shown that f is locally
Lipschitz. However, the directional derivative of f at
x̄ = 0 does not exist. In fact, the difference quotient
q(t) = f(t)

t = sin(log( 1
t )) does not converge, as can

be seen by considering the sequence tn = e�(n+ 1
2 )⇡

and computing

q(tn) = sin

✓✓
n +

1

2

◆
⇡

◆
=

⇢
1 if n is even,
�1 otherwise.

It is instructive to compare the two notions of directional
derivatives in (4) and (11) from a geometric point of view. The
former considers the variation of f along a ray emanating from
x in the direction d (i.e., f(x + tkd) vs. f(x) with tk & 0),
while the latter considers the variation of f in the direction
d for points in the neighborhood of x (i.e., f(xk + tkd) vs.
f(xk) with tk & 0 and xk ! x). In particular, the latter is
able to explore the behavior of f in a neighborhood of x rather
than just along a ray emanating from x. Generally, f�(x, d) is
an upper bound on the difference quotient in the neighborhood
of x. As we shall see, such an idea turns out to be very fruitful
when studying the local behavior of non-smooth functions.

Our discussion above reveals a fundamental difference in
the theory of subdifferentiation for convex functions and non-
convex functions. Specifically, in the convex case, subdifferen-
tiation entails linearization of the function at hand; in the non-
convex case, subdifferentiation can be seen as a convexification
process. This allows the use of concepts from convex analysis
to study the subdifferentials of non-convex functions.

Recall that in Section II, we have introudced several proper-
ties that the generalized subdifferential should possess. Now,
let us check whether the Clarke subdifferential possesses those
properties.

– (Smooth function). If f is smooth (i.e., continuously
differentiable) at x, then f�(x, d) = rf(x)T d for all
d 2 Rn and @Cf(x) = {rf(x)}; see [28, Proposition
1.13].

– (Convex function). As mentioned above, convex func-
tions are locally Lipschitz. In this case, the Clarke
subdifferential and Clarke directional derivative take on
particularly simple forms. Indeed, the Clarke subdiffer-
ential coincides with the usual convex subdifferential (2)
due to [29, Theorems 17.2 and 25.6]. In addition, the
directional derivative of a convex function, which always
exists, is equal to the Clarke directional derivative; i.e.,

f�(x, d) = f 0(x, d). (13)

– (Sum rule). The following example demonstrates that
the sum rule @C(f1 + f2) = @Cf1 + @Cf2 does not hold
in general. Consider the function f : R ! R given by
f(x) = max{x, 0}+min{0, x}. Let us compute @Cf1(0),
@Cf2(0), and @Cf(0):

f(x) =f1(x)+f2(x)

@Cf(0) = {1}

f2(x) = min{x,0}

@Cf2(0) = [0,1]@Cf1(0) = [0,1]

f1(x) = max{x,0}

Observe that

@Cf(0) = {1} ( @Cf1(0) + @Cf2(0) = [0, 2].

The failure of the sum rule is one of the obstacles to
computing the Clarke subgradient. Nevertheless, not all
is lost, as we still have the following weaker version of
the sum rule:

@C(f1 + f2) ✓ @Cf1 + @Cf2;

see [28, Proposition 1.12].
– (Tightness). It is known that if f attains a local minimum

at x̄, then 0 2 @Cf(x̄); see [30, Proposition 2.3.2]. By
Fact 3, this is equivalent to f�(x̄, d) � 0 for all d 2 Rn.
However, the Clarke subdifferential may contain sta-
tionary points that are not local minima. For instance,
consider the function R 3 x 7! f(x) = �|x|. It is easy
to see that @Cf(0) = [�1, 1]. It follows that x̄ = 0 is
a stationary point (as 0 2 @Cf(0)). However, the point
x̄ = 0 is clearly not a local minimum (in fact, it is a global
maximum). Moreover, observe that the corresponding
Clarke directional derivatives are f�(0, 1) = f�(0,�1) =
1, which shows that neither d = 1 nor d = �1
is a descent direction according to Clarke’s definition.
However, the ordinary directional derivatives exist and
are given by f 0(0, 1) = f 0(0,�1) = �1. It follows that
both d = 1 and d = �1 are descent directions. One may
argue that the above example is not persuasive enough,
as similar phenomena occur in the smooth case (e.g.,
R 3 x 7! f(x) = �x2). Hence, let us provide another,
perhaps more convincing, example:

• weak sum rule holds: ∇C(f1 + f2) ⊆ ∇Cf1 +∇Cf2

• equality holds when functions are subdifferentially regular (see lecture
notes for the definition)
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