Subgradient Methods

- subgradient method and stepsize rules
- convergence results and proof
- optimal step size and alternating projections
- speeding up subgradient methods

Subgradient method

subgradient method is simple algorithm to minimize nondifferentiable convex function f

$$
x^{(k+1)}=x^{(k)}-\alpha_{k} g^{(k)}
$$

- $x^{(k)}$ is the k th iterate
- $g^{(k)}$ is any subgradient of f at $x^{(k)}$
- $\alpha_{k}>0$ is the k th step size
not a descent method, so we keep track of best point so far

$$
f_{\mathrm{best}}^{(k)}=\min _{i=1, \ldots, k} f\left(x^{(i)}\right)
$$

Step size rules

step sizes are fixed ahead of time

- constant step size: $\alpha_{k}=\alpha$ (constant)
- constant step length: $\alpha_{k}=\gamma /\left\|g^{(k)}\right\|_{2}\left(\right.$ so $\left.\left\|x^{(k+1)}-x^{(k)}\right\|_{2}=\gamma\right)$
- square summable but not summable: step sizes satisfy

$$
\sum_{k=1}^{\infty} \alpha_{k}^{2}<\infty, \quad \sum_{k=1}^{\infty} \alpha_{k}=\infty
$$

- nonsummable diminishing: step sizes satisfy

$$
\lim _{k \rightarrow \infty} \alpha_{k}=0, \quad \sum_{k=1}^{\infty} \alpha_{k}=\infty
$$

Assumptions

- $f^{\star}=\inf _{x} f(x)>-\infty$, with $f\left(x^{\star}\right)=f^{\star}$
- $\|g\|_{2} \leq G$ for all $g \in \partial f$ (equivalent to Lipschitz condition on f)
- $\left\|x^{(1)}-x^{\star}\right\|_{2} \leq R$
these assumptions are stronger than needed, just to simplify proofs

Convergence results

define $\bar{f}=\lim _{k \rightarrow \infty} f_{\text {best }}^{(k)}$

- constant step size: $\bar{f}-f^{\star} \leq G^{2} \alpha / 2$, i.e., converges to $G^{2} \alpha / 2$-suboptimal (converges to f^{\star} if f differentiable, α small enough)
- constant step length: $\bar{f}-f^{\star} \leq G \gamma / 2$, i.e., converges to $G \gamma / 2$-suboptimal
- diminishing step size rule: $\bar{f}=f^{\star}$, i.e., converges

Convergence proof

key quantity: Euclidean distance to the optimal set, not the function value
let x^{\star} be any minimizer of f

$$
\begin{aligned}
\left\|x^{(k+1)}-x^{\star}\right\|_{2}^{2} & =\left\|x^{(k)}-\alpha_{k} g^{(k)}-x^{\star}\right\|_{2}^{2} \\
& =\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}-2 \alpha_{k} g^{(k) T}\left(x^{(k)}-x^{\star}\right)+\alpha_{k}^{2}\left\|g^{(k)}\right\|_{2}^{2} \\
& \leq\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}-2 \alpha_{k}\left(f\left(x^{(k)}\right)-f^{\star}\right)+\alpha_{k}^{2}\left\|g^{(k)}\right\|_{2}^{2}
\end{aligned}
$$

using $f^{\star}=f\left(x^{\star}\right) \geq f\left(x^{(k)}\right)+g^{(k) T}\left(x^{\star}-x^{(k)}\right)$
apply recursively to get

$$
\begin{aligned}
\left\|x^{(k+1)}-x^{\star}\right\|_{2}^{2} & \leq\left\|x^{(1)}-x^{\star}\right\|_{2}^{2}-2 \sum_{i=1}^{k} \alpha_{i}\left(f\left(x^{(i)}\right)-f^{\star}\right)+\sum_{i=1}^{k} \alpha_{i}^{2}\left\|g^{(i)}\right\|_{2}^{2} \\
& \leq R^{2}-2 \sum_{i=1}^{k} \alpha_{i}\left(f\left(x^{(i)}\right)-f^{\star}\right)+G^{2} \sum_{i=1}^{k} \alpha_{i}^{2}
\end{aligned}
$$

now we use

$$
\sum_{i=1}^{k} \alpha_{i}\left(f\left(x^{(i)}\right)-f^{\star}\right) \geq\left(f_{\mathrm{best}}^{(k)}-f^{\star}\right)\left(\sum_{i=1}^{k} \alpha_{i}\right)
$$

to get

$$
f_{\mathrm{best}}^{(k)}-f^{\star} \leq \frac{R^{2}+G^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}}
$$

constant step size: for $\alpha_{k}=\alpha$ we get

$$
f_{\text {best }}^{(k)}-f^{\star} \leq \frac{R^{2}+G^{2} k \alpha^{2}}{2 k \alpha}
$$

righthand side converges to $G^{2} \alpha / 2$ as $k \rightarrow \infty$
constant step length: for $\alpha_{k}=\gamma /\left\|g^{(k)}\right\|_{2}$ we get

$$
f_{\mathrm{best}}^{(k)}-f^{\star} \leq \frac{R^{2}+\sum_{i=1}^{k} \alpha_{i}^{2}\left\|g^{(i)}\right\|_{2}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}} \leq \frac{R^{2}+\gamma^{2} k}{2 \gamma k / G}
$$

righthand side converges to $G \gamma / 2$ as $k \rightarrow \infty$

square summable but not summable step sizes:

suppose step sizes satisfy

$$
\sum_{i=1}^{\infty} \alpha_{k}^{2}<\infty, \quad \sum_{k=1}^{\infty} \alpha_{k}=\infty
$$

then

$$
f_{\mathrm{best}}^{(k)}-f^{\star} \leq \frac{R^{2}+G^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}}
$$

as $k \rightarrow \infty$, numerator converges to a finite number, denominator converges to ∞, so $f_{\text {best }}^{(k)} \rightarrow f^{\star}$

Stopping criterion

- terminating when $\frac{R^{2}+G^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}} \leq \epsilon$ is really, really, slow
- optimal choice of α_{i} to achieve $\frac{R^{2}+G^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}} \leq \epsilon$ for smallest k :

$$
\alpha_{i}=(R / G) / \sqrt{k}, \quad i=1, \ldots, k
$$

number of steps required: $k=(R G / \epsilon)^{2}$

- the truth: there really isn't a good stopping criterion for the subgradient method...

Example: Piecewise linear minimization

$$
\operatorname{minimize} \quad f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

to find a subgradient of f : find index j for which

$$
a_{j}^{T} x+b_{j}=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

and take $g=a_{j}$
subgradient method: $x^{(k+1)}=x^{(k)}-\alpha_{k} a_{j}$
problem instance with $n=20$ variables, $m=100$ terms, $f^{\star} \approx 1.1$ $f_{\text {best }}^{(k)}-f^{\star}$, constant step length $\gamma=0.05,0.01,0.005$

diminishing step rules $\alpha_{k}=0.1 / \sqrt{k}$ and $\alpha_{k}=1 / \sqrt{k}$, square summable step size rules $\alpha_{k}=1 / k$ and $\alpha_{k}=10 / k$

Optimal step size when f^{\star} is known

- choice due to Polyak:

$$
\alpha_{k}=\frac{f\left(x^{(k)}\right)-f^{\star}}{\left\|g^{(k)}\right\|_{2}^{2}}
$$

(can also use when optimal value is estimated)

- motivation: start with basic inequality

$$
\left\|x^{(k+1)}-x^{\star}\right\|_{2}^{2} \leq\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}-2 \alpha_{k}\left(f\left(x^{(k)}\right)-f^{\star}\right)+\alpha_{k}^{2}\left\|g^{(k)}\right\|_{2}^{2}
$$

and choose α_{k} to minimize righthand side

- yields

$$
\left\|x^{(k+1)}-x^{\star}\right\|_{2}^{2} \leq\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}-\frac{\left(f\left(x^{(k)}\right)-f^{\star}\right)^{2}}{\left\|g^{(k)}\right\|_{2}^{2}}
$$

(in particular, $\left\|x^{(k)}-x^{\star}\right\|_{2}$ decreases each step)

- applying recursively,

$$
\sum_{i=1}^{k} \frac{\left(f\left(x^{(i)}\right)-f^{\star}\right)^{2}}{\left\|g^{(i)}\right\|_{2}^{2}} \leq R^{2}
$$

and so

$$
\sum_{i=1}^{k}\left(f\left(x^{(i)}\right)-f^{\star}\right)^{2} \leq R^{2} G^{2}
$$

which proves $f\left(x^{(k)}\right) \rightarrow f^{\star}$

PWL example with Polyak's step size, $\alpha_{k}=0.1 / \sqrt{k}, \alpha_{k}=1 / k$

Finding a point in the intersection of convex sets

$C=C_{1} \cap \cdots C_{m}$ is nonempty, $C_{1}, \ldots, C_{m} \subseteq \mathbf{R}^{n}$ closed and convex
find a point in C by minimizing

$$
f(x)=\max \left\{\operatorname{dist}\left(x, C_{1}\right), \ldots, \operatorname{dist}\left(x, C_{m}\right)\right\}
$$

with $\operatorname{dist}\left(x, C_{j}\right)=f(x)$, a subgradient of f is

$$
g=\nabla \operatorname{dist}\left(x, C_{j}\right)=\frac{x-P_{C_{j}}(x)}{\left\|x-P_{C_{j}}(x)\right\|_{2}}
$$

subgradient update with optimal step size:

$$
\begin{aligned}
x^{(k+1)} & =x^{(k)}-\alpha_{k} g^{(k)} \\
& =x^{(k)}-f\left(x^{(k)}\right) \frac{x-P_{C_{j}}(x)}{\left\|x-P_{C_{j}}(x)\right\|_{2}} \\
& =P_{C_{j}}\left(x^{(k)}\right)
\end{aligned}
$$

- a version of the famous alternating projections algorithm
- at each step, project the current point onto the farthest set
- for $m=2$ sets, projections alternate onto one set, then the other
- convergence: $\operatorname{dist}\left(x^{(k)}, C\right) \rightarrow 0$ as $k \rightarrow \infty$

Alternating projections

first few iterations:

$\ldots x^{(k)}$ eventually converges to a point $x^{\star} \in C_{1} \cap C_{2}$

Example: Positive semidefinite matrix completion

- some entries of matrix in \mathbf{S}^{n} fixed; find values for others so completed matrix is PSD
- $C_{1}=\mathbf{S}_{+}^{n}, C_{2}$ is (affine) set in \mathbf{S}^{n} with specified fixed entries
- projection onto C_{1} by eigenvalue decomposition, truncation: for $X=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}$,

$$
P_{C_{1}}(X)=\sum_{i=1}^{n} \max \left\{0, \lambda_{i}\right\} q_{i} q_{i}^{T}
$$

- projection of X onto C_{2} by re-setting specified entries to fixed values
specific example: 50×50 matrix missing about half of its entries

- initialize $X^{(1)}$ with unknown entries set to 0
convergence is linear:

Polyak step size when f^{\star} isn't known

- use step size

$$
\alpha_{k}=\frac{f\left(x^{(k)}\right)-f_{\mathrm{best}}^{(k)}+\gamma_{k}}{\left\|g^{(k)}\right\|_{2}^{2}}
$$

with $\sum_{k=1}^{\infty} \gamma_{k}=\infty, \sum_{k=1}^{\infty} \gamma_{k}^{2}<\infty$

- $f_{\text {best }}^{(k)}-\gamma_{k}$ serves as estimate of f^{\star}
- γ_{k} is in scale of objective value
- can show $f_{\text {best }}^{(k)} \rightarrow f^{\star}$

PWL example with Polyak's step size, using f^{\star}, and estimated with $\gamma_{k}=10 /(10+k)$

Speeding up subgradient methods

- subgradient methods are very slow
- often convergence can be improved by keeping memory of past steps

$$
x^{(k+1)}=x^{(k)}-\alpha_{k} g^{(k)}+\beta_{k}\left(x^{(k)}-x^{(k-1)}\right)
$$

(heavy ball method)
other ideas: localization methods, conjugate directions, . . .

A couple of speedup algorithms

$$
x^{(k+1)}=x^{(k)}-\alpha_{k} s^{(k)}, \quad \alpha_{k}=\frac{f\left(x^{(k)}\right)-f^{\star}}{\left\|s^{(k)}\right\|_{2}^{2}}
$$

(we assume f^{\star} is known or can be estimated)

- 'filtered' subgradient, $s^{(k)}=(1-\beta) g^{(k)}+\beta s^{(k-1)}$, where $\beta \in[0,1)$
- Camerini, Fratta, and Maffioli (1975)

$$
\begin{aligned}
& s^{(k)}=g^{(k)}+\beta_{k} s^{(k-1)}, \quad \beta_{k}=\max \left\{0,-\gamma_{k}\left(s^{(k-1)}\right)^{T} g^{(k)} /\left\|s^{(k-1)}\right\|_{2}^{2}\right\} \\
& \text { where } \gamma_{k} \in[0,2)\left(\gamma_{k}=1.5\right. \text { 'recommended') }
\end{aligned}
$$

PWL example, Polyak's step, filtered subgradient, CFM step

Optimality of the subgradient method

- optimal choice of α_{i} to achieve $f_{\text {best }}^{(k)}-f^{\star} \leq \frac{R^{2}+G^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}} \leq \epsilon$:

$$
\alpha_{i}=(R / G) / \sqrt{k}, \quad i=1, \ldots, k
$$

number of steps required: $k=(R G / \epsilon)^{2}$

- $f_{\text {best }}^{(k)}-f^{\star} \leq \frac{R G}{\sqrt{k}}$ after k iterations
- this is optimal among first order methods based on subgradients

Subgradient oracle

- we query a point x
- oracle returns a subgradient $g \in \partial f(x)$ and the function value $f(x)$
- there exists a convex function such that

$$
f_{\mathrm{best}}^{(k)}-f^{\star} \geq \frac{R G}{\sqrt{k}}
$$

Worst case function

- Suppose $x \in \mathbf{R}^{n}$ and let $f(x)=\max _{1 \leq i \leq k} x_{i}+\frac{\lambda}{2}\|x\|_{2}^{2}$

Resisting oracle

- $f(x)=\max _{1 \leq i \leq k} x_{i}+\frac{\lambda}{2}\|x\|_{2}^{2}$
- $f(x)$ is minimized at

$$
x^{*}= \begin{cases}-\frac{1}{\lambda k}, & 1 \leq i \leq k \\ 0, & k+1 \leq i \leq n\end{cases}
$$

with optimal value $f\left(x^{*}\right)=-\frac{1}{2 \lambda k}$

- $e_{i}+\lambda x$ is a subgradient
- it can be checked that $0 \in \partial f\left(x^{*}\right)$
- suppose that the subgradient oracle returns the subgradient

$$
e_{i^{*}}+\lambda x \in \partial f(x)=\partial \max _{1 \leq i \leq k} x_{i}+\frac{\lambda}{2}\|x\|_{2}^{2}
$$

where i^{*} is the first index such that $x_{i^{*}}=\max _{1 \leq i \leq k} x_{i}$

- we initialize at $x_{0}=0, f\left(x_{0}\right)=0$ and observe that

$$
\begin{array}{rlrl}
x_{1} & =\left[\begin{array}{lll}
-\alpha_{1}, 0,0, \ldots, 0
\end{array}\right]^{T} & f\left(x_{1}\right) \geq 0 \\
x_{2} & =\left[-\left(\alpha_{1}+\lambda \alpha_{2}\right),-\alpha_{2}, 0, \ldots, 0\right]^{T} & f\left(x_{2}\right) \geq 0 \\
\vdots & & \\
x_{k-1} & =[\underbrace{-*,-*,-*, \ldots,,-*,-*}_{\text {first } k-1 \text { coordinates }}, 0 \ldots, 0]^{T} & f\left(x_{k-1}\right) \geq 0
\end{array}
$$

Lower bound

- we can set λ to control $R=\left\|x_{0}-x^{*}\right\|_{2}$ and $G=\|\partial f(x)\|_{2}$ and obtain

$$
f_{\text {best }}^{(k)}-f^{\star} \geq \frac{R G}{2(1+\sqrt{k})}
$$

- the lower bound matches the earlier upper bound

$$
f_{\text {best }}^{(k)}-f^{\star} \leq \frac{R G}{\sqrt{k}}
$$

up to constants

- subgradient method is optimal among first-order methods
- localization methods can achieve better complexity

