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polynomial programming

A familiar problem

minimize f0(x)

subject to fi(x) ≤ 0 for all i = 1, . . . , m

hi(x) = 0 for all i = 1, . . . , p

in this section, objective, inequality and equality constraint functions are
all polynomials
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polynomial nonnegativity

does there exist x ∈ R
n such that f (x) < 0

• if not, f is called positive semidefinite or PSD

f (x) ≥ 0 for all x ∈ R
n

• the problem is NP-hard, but decidable
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certificates

does there exist x ∈ R
n such that f (x) < 0

• answer yes is easy to verify; exhibit x such that f (x) < 0

• answer no is hard; we need a certificate or a witness
i.e, a proof that there is no feasible point
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Sum of Squares Decomposition

f is nonnegative if there are polynomials g1, . . . , gs such that

f =

s
∑

i=1

g2
i

a checkable certificate, called a sum-of-squares (SOS) decomposition

• how do we find the gi

• when does such a certificate exist?
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example

we can write any polynomial as a quadratic function of monomials

f = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

=





x2

xy

y2





T 



4 2 −λ

2 −7 + 2λ −1
−λ −1 10









x2

xy

y2





= zTQ(λ)z

• above equation holds for all λ ∈ R

• if for some λ we have Q(λ) º 0, then we can factorize Q(λ)
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example, continued

e.g., with λ = 6, we have

Q(λ) =





4 2 −6
2 5 −1

−6 −1 10



 =





0 2
2 1
1 −3





[

0 2 1
2 1 −3

]

so we have an SOS decomposition

f =





x2

xy

y2





T 



0 2
2 1
1 −3





[

0 2 1
2 1 −3

]





x2

xy

y2





=

∥

∥

∥

∥

[

2xy + y2

2x2 + xy − 3y2

]∥

∥

∥

∥

2

=
(

2xy + y2)2
+

(

2x2 + xy − 3y2)2



8 Sum of Squares S. Lall, Stanford 2011.04.18.01

sum of squares and semidefinite programming

suppose f ∈ R[x1, . . . , xn], of degree 2d

let z be a vector of all monomials of degree less than or equal to d

f is SOS if and only if there exists Q such that

Q º 0

f = zTQz

• this is an SDP in standard primal form

• the number of components of z is
(n+d

d

)

• comparing terms gives affine constraints on the elements of Q
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sum of squares and semidefinite programming

if Q is a feasible point of the SDP, then to construct the SOS representation

factorize Q = V V T , and write V =
[

v1 . . . vr
]

, so that

f = zTV V Tz

= ‖V Tz‖2

=

r
∑

i=1

(vT
i z)2

• one can factorize using e.g., Cholesky or eigenvalue decomposition

• the number of squares r equals the rank of Q
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example

f = 2x4 + 2x3y − x2y2 + 5y4

=





x2

xy

y2





T 



q11 q12 q13
q12 q22 q23
q13 q23 q33









x2

xy

y2





= q11x
4 + 2q12x

3y + (q22 + 2q13)x
2y2 + 2q23xy3 + q33y

4

so f is SOS if and only if there exists Q satisfying the SDP

Q º 0 q11 = 2 2q12 = 2

2q12 + q22 = −1 2q23 = 0

q33 = 5
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convexity

the sets of PSD and SOS polynomials are a convex cones; i.e.,

f, g PSD =⇒ λf + µg is PSD for all λ, µ ≥ 0

let Pn,d be the set of PSD polynomials of degree ≤ d

let Σn,d be the set of SOS polynomials of degree ≤ d

• both Pn,d and Σn,d are convex cones in R
N where N =

(n+d
d

)

• we know Σn,d ⊂ Pn,d, and testing if f ∈ Pn,d is NP-hard

• but testing if f ∈ Σn,d is an SDP (but a large one)
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polynomials in one variable

if f ∈ R[x], then f is SOS if and only if f is PSD

example

all real roots must have even multiplicity, and highest coeff. is positive

f = x6 − 10x5 + 51x4 − 166x3 + 342x2 − 400x + 200

= (x − 2)2
(

x − (2 + i)
)(

x − (2 − i)
)(

x − (1 + 3i)
)(

x − (1 − 3i)
)

now reorder complex conjugate roots

= (x − 2)2
(

x − (2 + i)
)(

x − (1 + 3i)
)(

x − (2 − i)
)(

x − (1 − 3i)
)

= (x − 2)2
(

(x2 − 3x − 1) − i(4x − 7)
)(

(x2 − 3x − 1) + i(4x − 7)
)

= (x − 2)2
(

(x2 − 3x − 1)2 + (4x − 7)2
)

so every PSD scalar polynomial is the sum of one or two squares
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quadratic polynomials

a quadratic polynomial in n variables is PSD if and only if it is SOS

because it is PSD if and only if

f = xTQx

where Q ≥ 0

and it is SOS if and only if

f =
∑

i

(vT
i x)2

= xT
(

∑

i

viv
T
i

)

x
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some background

In 1888, Hilbert showed that PSD=SOS if and only if

• d = 2, i.e., quadratic polynomials

• n = 1, i.e., univariate polynomials

• d = 4, n = 2, i.e., quartic polynomials in two variables

d
n\ 2 4 6 8

1 yes yes yes yes
2 yes yes no no
3 yes no no no
4 yes no no no

• in general f is PSD does not imply f is SOS
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some background

• Connections with Hilbert’s 17th problem, solved by Artin: every PSD
polynomial is a SOS of rational functions.

• If f is not SOS, then can try with gf , for some g.

• For fixed f , can optimize over g too

• Otherwise, can use a “universal” construction of Pólya-Reznick.

More about this later.
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The Motzkin Polynomial

A positive semidefinite polynomial,
that is not a sum of squares.

M(x, y) = x2y4 + x4y2 + 1 − 3x2y2

• Nonnegativity follows from the arithmetic-geometric inequality
applied to (x2y4, x4y2, 1)

• Introduce a nonnegative factor x2 + y2 + 1

• Solving the SDPs we obtain the decomposition:

(x2 + y2 + 1) M(x, y) = (x2y − y)2 + (xy2 − x)2 + (x2y2 − 1)2+

+
1

4
(xy3 − x3y)2 +

3

4
(xy3 + x3y − 2xy)2
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The Univariate Case:

f (x) = a0 + a1x + a2x
2 + a3x

3 + · · · + a2dx
2d

=









1
x
...

xd









T 







q00 q01 . . . q0d
q01 q11 . . . q1d
... ... . . . ...

q0d q1d . . . qdd

















1
x
...

xd









=

d
∑

i=0

(

∑

j+k=i

qjk

)

xi

• In the univariate case, the SOS condition is exactly equivalent to non-
negativity.

• The matrices Ai in the SDP have a Hankel structure. This can be
exploited for efficient computation.
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About SOS/SDP

• The resulting SDP problem is polynomially sized (in n, for fixed d).

• By properly choosing the monomials, we can exploit structure (sparsity,
symmetries, ideal structure).

• An important feature: the problem is still a SDP if the coefficients of
F are variable, and the dependence is affine.

• Can optimize over SOS polynomials in affinely described families.

For instance, if we have p(x) = p0(x) + αp1(x) + βp2(x), we can
“easily” find values of α, β for which p(x) is SOS.
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Global Optimization

Consider the problem
min
x,y

f (x, y)

with

f (x, y) := 4x2 −
21

10
x4 +

1

3
x6 + xy − 4y2 + 4y4

• Not convex. Many local minima. NP-hard.

• Find the largest γ s.t. f (x, y) − γ is SOS

• Essentially due to Shor (1987).

• A semidefinite program (convex!).

• If exact, can recover optimal solution.

• Surprisingly effective.

Solving, the maximum γ is -1.0316. Exact value.
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Lyapunov Example

A jet engine model

ẋ = −y −
3

2
x2 −

1

2
x3

ẏ = 3x − y

Try a generic 4th order polynomial Lyapunov function.

V (x, y) =
∑

0≤j+k≤4

cjkx
jyk

Find a V (x, y) that satisfies the conditions:

• V (x, y) is SOS.

• −V̇ (x, y) is SOS.

Both conditions are affine in the cjk. Can do this directly using SOS/SDP!
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Lyapunov Example

After solving the SDPs, we obtain a Lyapunov function.

V = 4.5819x2 − 1.5786xy + 1.7834y2 − 0.12739x3 + 2.5189x2y − 0.34069xy2

+0.61188y3+0.47537x4−0.052424x3y+0.44289x2y2 +0.0000018868xy3+0.090723y4
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Extensions

• Other linear differential inequalities (e.g. Hamilton-Jacobi).

• Many possible variations: nonlinear optimal control, parameter depen-
dent Lyapunov functions, etc.

• Can also do local results (for instance, on compact domains).

• Polynomial and rational vector fields, or functions with an underlying
algebraic structure.

• Natural extension of the SDPs for the linear case.
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Automated Inference and Algebra

Automated inference is a well-known approach for formal proof systems.

Suppose f1(x) ≥ 0 and f2(x) ≥ 0, then h(x) ≥ 0
if any of the following hold:

(i) h(x) = f1(x) + f2(x)

(ii) h(x) = f1(x)f2(x)

(iii) For any f , the function h(x) = f (x)2

• We can use algebra to generate such valid inequalities

• Closure under these inference rules gives the cone of polynomials gen-
erated by the fi, written cone{f1, f2, . . . , fm}
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The Sum-of-Squares Cone

A polynomial f ∈ R[x1, . . . , xn] is called a sum-of-squares (SOS) if

f (x) =

r
∑

i=1

si(x)2

for some polynomials s1, . . . , sr and some r ≥ 0

• Denote by Σ the set of SOS polynomials

• Σ is the smallest cone.

• This cone can be computationally characterized using
semidefinite programming.

• The SOS decomposition is a simple certificate of nonnegativity of f .
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The Cone

We can explicitly parameterize the cone generated by the fi.

For example, h ∈ cone{f1, f2, f3} if and only if

h = s1g1 + · · · + srgr

where

si ∈ Σ and gi ∈
{

1, f1, f2, f3, f1f2, f2f3, f3f1, f1f2f3

}

In general, every h is a linear combination of squarefree products of the fi,
with SOS coefficients
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An Algebraic Dual Problem

Suppose f1, . . . , fm are polynomials. The primal feasibility problem is

does there exist x ∈ R
n such that

fi(x) ≥ 0 for all i = 1, . . . , m

The dual feasibility problem is

Is it true that − 1 ∈ cone{f1, . . . , fm}

If the dual problem is feasible, then the primal problem is infeasible.

In fact, a result called the Positivstellensatz (Stengle 1974) implies the
converse; i.e., this is a strong duality result.
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Example

Consider the feasibility problem

S =
{

(x, y) ∈ R
2 | f (x, y) ≥ 0, g(x, y) ≥ 0

}

where

f = x − y2 + 3 g = −y − x2 − 2

By the P-satz, the primal is infeasible if and only if there exist polynomials
s0, s1, s2, s3 ∈ Σ such that

−1 = s0 + s1f + s2g + s3fg

A certificate is given by

s0 = 1
3 + 2

(

y + 3
2

)2
+ 6

(

x − 1
6

)2
, s1 = 2, s2 = 6, s3 = 0



28 Sum of Squares S. Lall, Stanford 2011.04.18.01

Suppose we have SOS polynomials s0, . . . , s3 such that

−1 = s0 + s1f1 + s2f2 + s3f1f2

Then this is a certificate that there is no x ∈ R
n such that

f1(x) ≥ 0 and f2(x) ≥ 0
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Positivstellensatz

The polynomials si give a certificate of infeasibility of the primal problem.

Given them, one may immediately computationally verify that

−1 = s1g1 + · · · + srgr

and this is a proof of infeasibility

Finding Refutations

• Geometrically, cone{f1, . . . , fm} is a convex cone, so testing if it
contains −1 is a convex program.

• There is a correspondence between the geometric object (the feasible
set) and the algebraic object (the cone).


