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2 Sum of Squares
polynomial programming

A familiar problem

minimize folz)
subject to filz) <0
h/L(:C) =0

S. Lall, Stanford 2011.04.18.01

foralli=1,...,m

forallez=1,...,p

in this section, objective, inequality and equality constraint functions are

all polynomials
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polynomial nonnegativity

does there exist x € R" such that f(x) < 0

e if not, f is called positive semidefinite or PSD

f(x) >0 forall z e R"

e the problem is NP-hard, but decidable
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certificates

does there exist x € R" such that f(x) < 0

e answer yes is easy to verify; exhibit x such that f(x) < 0

e answer no is hard: we need a certificate or a witness
I.e, a proof that there is no feasible point
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Sum of Squares Decomposition

f is nonnegative if there are polynomials g1, ..., gs such that

S
=Y g
1=1

a checkable certificate, called a sum-of-squares (SOS) decomposition

e how do we find the g;

e when does such a certificate exist?
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example

S. Lall, Stanford 2011.04.18.01

we can write any polynomial as a guadratic function of monomials

f= Ag? + 4x3y — 7x2y2 — 2xy3 — 10y4
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e above equation holds for all A € R
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e if for some A we have QQ(\) > 0, then we can factorize QQ(\)
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example, continued

e.g., with A = 6, we have
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so we have an SOS decomposition
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sum of squares and semidefinite programming

suppose f € Rlxq,...,xp], of degree 2d

let 2 be a vector of all monomials of degree less than or equal to d

f is SOS if and only if there exists () such that

Q=0
f:zTQz

e this is an SDP in standard primal form

e the number of components of z is (n;d)

e comparing terms gives affine constraints on the elements of ()
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sum of squares and semidefinite programming

if () is a feasible point of the SDP, then to construct the SOS representation
factorize () = VVT, and write V' = [vl .. .w], so that

f= dvvly
= [V 2|

=D (v 2)’
i=1

e one can factorize using e.g., Cholesky or eigenvalue decomposition

e the number of squares r equals the rank of ()
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example

f= 20 -+ 2x3y — :z:2y2 + 5y4

A e o
2’1" (a1 q2 q3] [#°
= XY d12 422 423 ry
2 @ o3 as3] |y

4 5 9 A
= gzt + 2q102°y + (go2 + 2q13)2%Y* + 2q932Y° + q33Y

so f is SOS if and only if there exists () satisfying the SDP

Q>0 q11 = 2 2q19 = 2
2q12 +qo2 = —1 2q93 =0
q33 = O
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convexity

the sets of PSD and SOS polynomials are a convex cones; i.e.,

fy9 PSD — Af + g is PSD for all A, jp > 0

let P, 4 be the set of PSD polynomials of degree < d
let 2, 4 be the set of SOS polynomials of degree < d

e both P, ;and %, ; are convex cones in R where N = (n;d)

o we know 2, 4 C P, 4, and testing if f € P, ;jis NP-hard

e but testing if f €3, ;is an SDP (but a large one)
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polynomials in one variable

if f € Rz, then f is SOS if and only if f is PSD

example

all real roots must have even multiplicity, and highest coeff. is positive

=29 —102° + 512" — 1662° + 3422 — 400z + 200
= (z—2*(xr — 2+1) (z — (2 —19) (z — (1 +30) (z — (1 — 34))

now reorder complex conjugate roots

= (z—2)*(xr — 2+1) (z — (1+3) (x — (2 —1)) (z — (1 — 34))
= (z — 2)2(($2 — 3z —1) —i(dx = 7)) ((x2 — 3z — 1) +i(dx — 7))
= (x — 2) ((x — 3z — 1) + (4o — 7)2)

so every PSD scalar polynomial is the sum of one or two squares
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quadratic polynomials

a quadratic polynomial in n variables is PSD if and only if it is SOS

because it is PSD if and only if
f= :CTQZIZ‘
where () > 0

and it is SOS if and only if



14  Sum of Squares

some background

In 1888, Hilbert showed that PSD=SO0S if and only if

e d =2, i.e., quadratic polynomials

e n =1, i.e., univariate polynomials

e d=4,n=2,i.e., quartic polynomials in two variables
N2 4 6 8

yes yes yes yes

yes yes no no

yes no no no
yes no no no

N O N

e in general f is PSD does not imply f is SOS

S. Lall, Stanford 2011.04.18.01
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some background

e Connections with Hilbert's 17th problem, solved by Artin: every PSD
polynomial is a SOS of rational functions.

e If fis not SOS, then can try with ¢ f, for some g.

e For fixed f, can optimize over g too

e Otherwise, can use a “universal’ construction of Pdlya-Reznick.

More about this later.
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The Motzkin Polynomial

A positive semidefinite polynomial, ..
that is not a sum of squares.
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e Nonnegativity follows from the arithmetic—gyeometric inequality
applied to (z%y?, z*y?, 1)

e Introduce a nonnegative factor 2+ y2 + 1
e Solving the SDPs we obtain the decomposition:

(2% +y* + 1) M(z,y) = (z°y — y)* + (2 — 2)° + (z°y° — 1)+
1 3
+ Z(ﬂfyg — 29y)° + Z(zy3 + 2y — 2ay)?
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The Univariate Case:

Flz) = ap+ az + aox” + azz> + - - - + aggx®
.o T - o - -
1 400 qo1 --- dod | | 1

_ | 7 q01 411 --- 41d L
2] L dod ia - Qaa] [ 2
d .

-3 (3 )
i=0 Njrk=i

e In the univariate case, the SOS condition is exactly equivalent to non-
negativity.

e The matrices A; in the SDP have a Hankel structure. This can be
exploited for efficient computation.
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About SOS/SDP
e The resulting SDP problem is polynomially sized (in n, for fixed d).

e By properly choosing the monomials, we can exploit structure (sparsity,
symmetries, ideal structure).

e An important feature: the problem is still a SDP if the coefficients of
F'" are variable, and the dependence is affine.
e Can optimize over SOS polynomials in affinely described families.

For instance, if we have p(x) = po(x) + api(x) + Bpa(x), we can
“easily” find values of «, 3 for which p(z) is SOS.
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Global Optimization

Consider the problem

min f(z, )
T,y

with 51 !
flx,y) = Ax® — 1—033 +§az O 4 vy — 49 + 4t

e Not convex. Many local minima. NP-hard.
e Find the largest v s.t. f(x,y) — v is SOS
e Essentially due to Shor (1987).

‘
"""""

‘0""“ .0“‘“

o A semidefinite program (convex!). .o \\ "0"',

'M

=S wu

e |f exact, can recover optimal solution.

e Surprisingly effective.

Solving, the maximum v is -1.0316. Exact value.
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Lyapunov Example

A jet engine model

| 359 14
r = — Zx 2:1:
y = 3T —y

Try a generic 4th order polynomial Lyapunov function.

Viey) = Y. cpaly
0<j+k<4

Find a V(z,y) that satisfies the conditions:
o V(x,y)is SOS.
o —V(z,y)is SOS.

S. Lall, Stanford 2011.04.18.01

Both conditions are affine in the ¢;;.. Can do this directly using SOS/SDP!
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Lyapunov Example

After solving the SDPs, we obtain a Lyapunov function.
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2t / -
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V = 4.58192% — 1.5786xy + 1.7834y* — 0.127392° + 2.5189z*y — 0.34069x1°
+0.61188y> +0.47537z* — 0.052424 23y + 0.442892*y* + 0.00000188682y> + 0.090723y*



22 Sum of Squares S. Lall, Stanford 2011.04.18.01

Extensions
e Other linear differential inequalities (e.g. Hamilton-Jacobi).

e Many possible variations: nonlinear optimal control, parameter depen-
dent Lyapunov functions, etc.

e Can also do local results (for instance, on compact domains).

e Polynomial and rational vector fields, or functions with an underlying
algebraic structure.

e Natural extension of the SDPs for the linear case.
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Automated Inference and Algebra

Automated inference is a well-known approach for formal proof systems.

Suppose fi(z) > 0 and fo(x) > 0, then h(x) > 0
if any of the following hold:

(i) h(z)=fi(z)+ fa(z)
(i) h(x) = fi(z)fo(z)
(iii) For any f, the function h(z) = f(x)?

e We can use algebra to generate such valid inequalities

e Closure under these inference rules gives the cone of polynomials gen-
erated by the f;, written cone{ f1, fo, ..., fm}



24 Sum of Squares S. Lall, Stanford 2011.04.18.01

The Sum-of-Squares Cone

A polynomial f € R|xq,...,xy] is called a sum-of-squares (SOS) if

.
2
fla) =) si(x)
1=1
for some polynomials sq,..., s, and some r > 0

e Denote by X the set of SOS polynomials
e Y. is the smallest cone.

e This cone can be computationally characterized using
semidefinite programming.

e The SOS decomposition is a simple certificate of nonnegativity of f.
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The Cone

S. Lall, Stanford 2011.04.18.01

We can explicitly parameterize the cone generated by the f;.

For example, h € cone{ fi, f9, f3} if and only if

where

h=s191+- -+ Srgr

sp€X and g; € { L, f1, Jo, J3, Jifo, Jofss J3/1, f1f2f3}

In general, every h is a linear combination of squarefree products of the f;,

with SOS coefficients
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An Algebraic Dual Problem

Suppose f1,..., fm are polynomials. The primal feasibility problem is

does there exist z € R" such that
filx) >0  foralli=1,...,m

The dual feasibility problem is

Is it true that — 1 € cone{f},..., fm}

If the dual problem is feasible, then the primal problem is infeasible.

In fact, a result called the Positivstellensatz (Stengle 1974) implies the
converse; i.e., this is a strong duality result.
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Example

Consider the feasibility problem o
S={(r,y) eR*[ flz,y) 2 0,9(x,y) =0}
where LS

f=z—1y?+3 g=—y—a>—-2 /\

By the P-satz, the primal is infeasible if and only if there exist polynomials
S0, S1, S92, S3 € X such that

—1l=s0+51f +529+ s3fg
A certificate is given by

30:%+2(y+%)2+6($—6)2, s1=2, s9y=06, s3=0
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Suppose we have SOS polynomials sq, ..., s3 such that

—1 =350+ s1/1+s2/2+ 53/1/2

Then this is a certificate that there is no 2 € R such that

filz) >0  and  folz) >0
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Positivstellensatz

The polynomials s; give a certificate of infeasibility of the primal problem.

Given them, one may immediately computationally verify that
—l=s191+ -+ 5rgr

and this is a proof of infeasibility

Finding Refutations

e Geometrically, cone{f,..., fi} is a convex cone, so testing if it

contains —1 Is a convex program.

e There is a correspondence between the geometric object (the feasible
set) and the algebraic object (the cone).



