
Sequential Convex Programming

• sequential convex programming

• alternating convex optimization

• convex-concave procedure
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Methods for nonconvex optimization problems

• convex optimization methods are (roughly) always global, always fast

• for general nonconvex problems, we have to give up one

– local optimization methods are fast, but need not find global
solution (and even when they do, cannot certify it)

– global optimization methods find global solution (and certify it),
but are not always fast (indeed, are often slow)

• this lecture: local optimization methods that are based on solving a
sequence of convex problems

EE364b, Stanford University 1



Sequential convex programming (SCP)

• a local optimization method for nonconvex problems that leverages
convex optimization

– convex portions of a problem are handled ‘exactly’ and efficiently

• SCP is a heuristic

– it can fail to find optimal (or even feasible) point
– results can (and often do) depend on starting point

(can run algorithm from many initial points and take best result)

• SCP often works well, i.e., finds a feasible point with good, if not
optimal, objective value
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Problem

we consider nonconvex problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, j = 1, . . . , p

with variable x ∈ Rn

• f0 and fi (possibly) nonconvex

• hi (possibly) non-affine
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Basic idea of SCP

• maintain estimate of solution x(k), and convex trust region T (k) ⊂ Rn

• form convex approximation f̂i of fi over trust region T (k)

• form affine approximation ĥi of hi over trust region T (k)

• x(k+1) is optimal point for approximate convex problem

minimize f̂0(x)

subject to f̂i(x) ≤ 0, i = 1, . . . ,m

ĥi(x) = 0, i = 1, . . . , p
x ∈ T (k)
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Trust region

• typical trust region is box around current point:

T (k) = {x | |xi − x
(k)
i | ≤ ρi, i = 1, . . . , n}

• if xi appears only in convex inequalities and affine equalities, can take
ρi = ∞
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Affine and convex approximations via Taylor expansions

• (affine) first order Taylor expansion:

f̂(x) = f(x(k)) +∇f(x(k))T (x− x(k))

• (convex part of) second order Taylor expansion:

f̂(x) = f(x(k)) +∇f(x(k))T (x− x(k)) + (1/2)(x− x(k))TP (x− x(k))

P =
(

∇2f(x(k))
)

+
, PSD part of Hessian

• give local approximations, which don’t depend on trust region radii ρi
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Quadratic trust regions

• full second order Taylor expansion:

f̂(x) = f(x(k))+∇f(x(k))T (x−x(k))+(1/2)(x−x(k))∇2f(x(k))(x−x(k)),

• trust region is compact ellipse around current point: for some P ≻ 0

T (k) = {x | (x− x(k))TP (x− x(k)) ≤ ρ}

• Update is any x(k+1) for which there is λ ≥ 0 s.t.

∇2f(x(k)) + λP � 0, λ(‖x(k+1)‖2 − 1) = 0,

(∇2f(x(k)) + λP )x(k) = −∇f(x(k))
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Particle method

• particle method:

– choose points z1, . . . , zK ∈ T (k)

(e.g., all vertices, some vertices, grid, random, . . . )
– evaluate yi = f(zi)
– fit data (zi, yi) with convex (affine) function

(using convex optimization)

• advantages:

– handles nondifferentiable functions, or functions for which evaluating
derivatives is difficult

– gives regional models, which depend on current point and trust
region radii ρi

EE364b, Stanford University 8



Fitting affine or quadratic functions to data

fit convex quadratic function to data (zi, yi)

minimize
∑K

i=1

(

(zi − x(k))TP (zi − x(k)) + qT (zi − x(k)) + r − yi
)2

subject to P � 0

with variables P ∈ Sn, q ∈ Rn, r ∈ R

• can use other objectives, add other convex constraints

• no need to solve exactly

• this problem is solved for each nonconvex constraint, each SCP step
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Quasi-linearization

• a cheap and simple method for affine approximation

• write h(x) as A(x)x+ b(x) (many ways to do this)

• use ĥ(x) = A(x(k))x+ b(x(k))

• example:

h(x) = (1/2)xTPx+ qTx+ r = ((1/2)Px+ q)
T
x+ r

• ĥql(x) = ((1/2)Px(k) + q)Tx+ r

• ĥtay(x) = (Px(k) + q)T (x− x(k)) + h(x(k))
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Example

• nonconvex QP

minimize f(x) = (1/2)xTPx+ qTx
subject to ‖x‖∞ ≤ 1

with P symmetric but not PSD

• use approximation

f(x(k)) + (Px(k) + q)T (x− x(k)) + (1/2)(x− x(k))TP+(x− x(k))
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• example with x ∈ R20

• SCP with ρ = 0.2, started from 10 different points
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• runs typically converge to points between −60 and −50

• dashed line shows lower bound on optimal value ≈ −66.5
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Lower bound via Lagrange dual

• write constraints as x2
i ≤ 1 and form Lagrangian

L(x, λ) = (1/2)xTPx+ qTx+

n
∑

i=1

λi(x
2
i − 1)

= (1/2)xT (P + 2diag(λ))x+ qTx− 1Tλ

• g(λ) = −(1/2)qT (P + 2diag(λ))
−1

q − 1Tλ; need P + 2diag(λ) ≻ 0

• solve dual problem to get best lower bound:

maximize −(1/2)qT (P + 2diag(λ))
−1

q − 1Tλ
subject to λ � 0, P + 2diag(λ) ≻ 0
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Some (related) issues

• approximate convex problem can be infeasible

• how do we evaluate progress when x(k) isn’t feasible?
need to take into account

– objective f0(x
(k))

– inequality constraint violations fi(x
(k))+

– equality constraint violations |hi(x
(k))|

• controlling the trust region size

– ρ too large: approximations are poor, leading to bad choice of x(k+1)

– ρ too small: approximations are good, but progress is slow
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Exact penalty formulation

• instead of original problem, we solve unconstrained problem

minimize φ(x) = f0(x) + λ (
∑m

i=1 fi(x)+ +
∑p

i=1 |hi(x)|)

where λ > 0

• for λ large enough, minimizer of φ is solution of original problem

• for SCP, use convex approximation

φ̂(x) = f̂0(x) + λ

(

m
∑

i=1

f̂i(x)+ +

p
∑

i=1

|ĥi(x)|

)

• approximate problem always feasible
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Trust region update

• judge algorithm progress by decrease in φ, using solution x̃ of
approximate problem

• decrease with approximate objective: δ̂ = φ(x(k))− φ̂(x̃)
(called predicted decrease)

• decrease with exact objective: δ = φ(x(k))− φ(x̃)

• if δ ≥ αδ̂, ρ(k+1) = βsuccρ(k), x(k+1) = x̃
(α ∈ (0, 1), βsucc ≥ 1; typical values α = 0.1, βsucc = 1.1)

• if δ < αδ̂, ρ(k+1) = βfailρ(k), x(k+1) = x(k)

(βfail ∈ (0, 1); typical value βfail = 0.5)

• interpretation: if actual decrease is more (less) than fraction α of
predicted decrease then increase (decrease) trust region size
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Nonlinear optimal control

θ1

θ2

τ1

τ2

l1, m1

l2, m2

• 2-link system, controlled by torques τ1 and τ2 (no gravity)
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• dynamics given by M(θ)θ̈ +W (θ, θ̇)θ̇ = τ , with

M(θ) =

[

(m1 +m2)l
2
1 m2l1l2(s1s2 + c1c2)

m2l1l2(s1s2 + c1c2) m2l
2
2

]

W (θ, θ̇) =

[

0 m2l1l2(s1c2 − c1s2)θ̇2
m2l1l2(s1c2 − c1s2)θ̇1 0

]

si = sin θi, ci = cos θi

• nonlinear optimal control problem:

minimize J =
∫ T

0
‖τ(t)‖22 dt

subject to θ(0) = θinit, θ̇(0) = 0, θ(T ) = θfinal, θ̇(T ) = 0
‖τ(t)‖∞ ≤ τmax, 0 ≤ t ≤ T
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Discretization

• discretize with time interval h = T/N

• J ≈ h
∑N

i=1 ‖τi‖
2
2, with τi = τ(ih)

• approximate derivatives as

θ̇(ih) ≈
θi+1 − θi−1

2h
, θ̈(ih) ≈

θi+1 − 2θi + θi−1

h2

• approximate dynamics as set of nonlinear equality constraints:

M(θi)
θi+1 − 2θi + θi−1

h2
+W

(

θi,
θi+1 − θi−1

2h

)

θi+1 − θi−1

2h
= τi

• θ0 = θ1 = θinit; θN = θN+1 = θfinal

EE364b, Stanford University 19



• discretized nonlinear optimal control problem:

minimize h
∑N

i=1 ‖τi‖
2
2

subject to θ0 = θ1 = θinit, θN = θN+1 = θfinal
‖τi‖∞ ≤ τmax, i = 1, . . . , N

M(θi)
θi+1−2θi+θi−1

h2 +W
(

θi,
θi+1−θi−1

2h

)

θi+1−θi−1
2h = τi

• replace equality constraints with quasilinearized versions

M(θ
(k)
i )

θi+1 − 2θi + θi−1

h2
+W

(

θ
(k)
i ,

θ
(k)
i+1 − θ

(k)
i−1

2h

)

θi+1 − θi−1

2h
= τi

• trust region: only on θi

• initialize with θi = ((i− 1)/(N − 1))(θfinal − θinit), i = 1, . . . , N
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Numerical example

• m1 = 1, m2 = 5, l1 = 1, l2 = 1

• N = 40, T = 10

• θinit = (0,−2.9), θfinal = (3, 2.9)

• τmax = 1.1

• α = 0.1, βsucc = 1.1, βfail = 0.5, ρ(1) = 90◦

• λ = 2

EE364b, Stanford University 21



SCP progress
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Convergence of J and torque residuals
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Predicted and actual decreases in φ
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Trajectory plan
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Convex composite

• general form: for h : Rm → R convex, c : Rn → Rm smooth,

f(x) = h(c(x))

• exact penalty formulation of

minimize f(x) subject to c(x) = 0

• approximate f locally by convex approximation: near x,

f(y) ≈ f̂x(y) = h(c(x) +∇c(x)T (y − x))
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Convex composite (prox-linear) algorithm

given function f = h ◦ c and convex domain C,
line search parameters α ∈ (0, .5), β ∈ (0, 1), stopping tolerance ǫ > 0

k := 0
repeat

Use model f̂ = fx(k)

Set x̂(k+1) = argminx∈C{f̂(x)} and direction ∆(k+1) = x̂(k+1) − x(k)

Set δ(k) = f̂(x(k) +∆(k))− f(x(k))
Set t = 1
while f(x(k) + t∆(k)) ≥ f(x(k)) + αtδ(k)

t = β · t
If ‖∆(k+1)‖2/t ≤ ǫ, quit
k := k + 1
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Nonlinear measurements (phase retrieval)

• phase retrieval problem: for ai ∈ Cn, x⋆ ∈ Cn, observe

bi = |a∗ix⋆|
2

• goal is to find x, natural objectives are of form

f(x) =
∥

∥|Ax|2 − b
∥

∥

• “robust” phase retrieval problem

f(x) =

m
∑

i=1

∣

∣|a∗ix|
2 − bi

∣

∣

or quadratic objective

f(x) =
1

2

m
∑

i=1

(

|a∗ix|
2 − bi

)2
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Numerical example

• m = 200, n = 50, over reals R (sign retrieval)

• Generate 10 independent examples, A ∈ Rm×n, b = |Ax⋆|
2,

Aij ∼ N (0, 1), x⋆ ∼ N (0, I)

• Two sets of experiments: initialize at

x(0) ∼ N (0, I) or x(0) ∼ N (x⋆, I)

• Use h(z) = ‖z‖1 or h(z) = ‖z‖22, c(x) = (Ax)2 − b.
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Numerical example (absolute loss, random initialization)

20 40 60 80 100
10−5

10−4

10−3

10−2

10−1

100

101

102

103
f
(x

(k
) )
−

f
(x

⋆
)

k

EE364b, Stanford University 30



Numerical example (absolute loss, good initialization)
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Numerical example (squared loss, random init)
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Numerical example (squared loss, good init)
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Extensions and convergence of basic prox-linear method

• regularization or “trust” region: update

x(k+1) = argmin
x∈C

{

h(c(x(k)) +∇c(x(k))T (x− x(k))) +
1

2αk

‖x− x(k)‖22

}

• with line search or αk small enough, lower bound on
infx f(x) = infx h(c(x)) > −∞, guaranteed to converge to stationary
point

• When h(z) = ‖z‖22, often called ’Gauss–Newton’ method, some variants
called ’Levenberg–Marquardt’
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‘Difference of convex’ programming

• express problem as

minimize f0(x)− g0(x)
subject to fi(x)− gi(x) ≤ 0, i = 1, . . . ,m

where fi and gi are convex

• fi − gi are called ‘difference of convex’ functions

• problem is sometimes called ‘difference of convex programming’
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Convex-concave procedure

• obvious convexification at x(k): replace f(x)− g(x) with

f̂(x) = f(x)− g(x(k))−∇g(x(k))T (x− x(k))

• since f̂(x) ≥ f(x) for all x, no trust region is needed

– true objective at x̃ is better than convexified objective
– true feasible set contains feasible set for convexified problem

• SCP sometimes called ‘convex-concave procedure’
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Example (BV §7.1)

• given samples y1, . . . , yN ∈ Rn from N (0,Σtrue)

• negative log-likelihood function is

f(Σ) = log detΣ +Tr(Σ−1Y ), Y = (1/N)

N
∑

i=1

yiy
T
i

(dropping a constant and positive scale factor)

• ML estimate of Σ, with prior knowledge Σij ≥ 0:

minimize f(Σ) = log detΣ +Tr(Σ−1Y )
subject to Σij ≥ 0, i, j = 1, . . . , n

with variable Σ (constraint Σ ≻ 0 is implicit)
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• first term in f is concave; second term is convex

• linearize first term in objective to get

f̂(Σ) = log detΣ(k) +Tr
(

(Σ(k))−1(Σ− Σ(k))
)

+Tr(Σ−1Y )
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Numerical example

convergence of problem instance with n = 10, N = 15
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Alternating convex optimization

• given nonconvex problem with variable (x1, . . . , xn) ∈ Rn

• I1, . . . , Ik ⊂ {1, . . . , n} are index subsets with
⋃

j Ij = {1, . . . , n}

• suppose problem is convex in subset of variables xi, i ∈ Ij,
when xi, i 6∈ Ij are fixed

• alternating convex optimization method: cycle through j, in each step
optimizing over variables xi, i ∈ Ij

• special case: bi-convex problem

– x = (u, v); problem is convex in u (v) with v (u) fixed
– alternate optimizing over u and v
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Nonnegative matrix factorization

• NMF problem:
minimize ‖A−XY ‖F
subject to Xij, Yij ≥ 0

variables X ∈ Rm×k, Y ∈ Rk×n, data A ∈ Rm×n

• difficult problem, except for a few special cases (e.g., k = 1)

• alternating convex optimation: solve QPs to optimize over X, then Y ,
then X . . .

EE364b, Stanford University 41



Example

• convergence for example with m = n = 50, k = 5
(five starting points)
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