Sequential Convex Programming

- sequential convex programming
- alternating convex optimization
- convex-concave procedure

Methods for nonconvex optimization problems

- convex optimization methods are (roughly) always global, always fast
- for general nonconvex problems, we have to give up one
 - local optimization methods are fast, but need not find global solution (and even when they do, cannot certify it)
 - global optimization methods find global solution (and certify it), but are not always fast (indeed, are often slow)
- this lecture: local optimization methods that are based on solving a sequence of convex problems

Sequential convex programming (SCP)

- a local optimization method for nonconvex problems that leverages convex optimization
 - convex portions of a problem are handled 'exactly' and efficiently
- SCP is a **heuristic**
 - it can fail to find optimal (or even feasible) point
 - results can (and often do) depend on starting point
 (can run algorithm from many initial points and take best result)
- SCP often works well, *i.e.*, finds a feasible point with good, if not optimal, objective value

Problem

we consider nonconvex problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad j = 1, \dots, p \end{array}$$

with variable $x \in \mathbf{R}^n$

- f_0 and f_i (possibly) nonconvex
- h_i (possibly) non-affine

Basic idea of SCP

- maintain estimate of solution $x^{(k)}$, and convex **trust region** $\mathcal{T}^{(k)} \subset \mathbf{R}^n$
- form convex approximation \hat{f}_i of f_i over trust region $\mathcal{T}^{(k)}$
- form affine approximation \hat{h}_i of h_i over trust region $\mathcal{T}^{(k)}$
- $x^{(k+1)}$ is optimal point for approximate convex problem

$$\begin{array}{ll} \text{minimize} & \hat{f}_0(x) \\ \text{subject to} & \hat{f}_i(x) \leq 0, \quad i = 1, \dots, m \\ & \hat{h}_i(x) = 0, \quad i = 1, \dots, p \\ & x \in \mathcal{T}^{(k)} \end{array}$$

Trust region

• typical trust region is box around current point:

$$\mathcal{T}^{(k)} = \{ x \mid |x_i - x_i^{(k)}| \le \rho_i, \ i = 1, \dots, n \}$$

• if x_i appears only in convex inequalities and affine equalities, can take $\rho_i = \infty$

Affine and convex approximations via Taylor expansions

• (affine) first order Taylor expansion:

$$\hat{f}(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)})$$

• (convex part of) second order Taylor expansion:

$$\hat{f}(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + (1/2)(x - x^{(k)})^T P(x - x^{(k)})$$

$$P = \left(\nabla^2 f(x^{(k)}) \right)_+$$
, PSD part of Hessian

• give local approximations, which don't depend on trust region radii ho_i

Quadratic trust regions

• full second order Taylor expansion:

$$\hat{f}(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + (1/2)(x - x^{(k)}) \nabla^2 f(x^{(k)}) (x - x^{(k)}),$$

• trust region is **compact** ellipse around current point: for some $P \succ 0$

$$\mathcal{T}^{(k)} = \{ x \mid (x - x^{(k)})^T P(x - x^{(k)}) \le \rho \}$$

• Update is any $x^{(k+1)}$ for which there is $\lambda \ge 0$ s.t.

$$\nabla^2 f(x^{(k)}) + \lambda P \succeq 0, \quad \lambda(\|x^{(k+1)}\|_2 - 1) = 0,$$
$$(\nabla^2 f(x^{(k)}) + \lambda P) x^{(k)} = -\nabla f(x^{(k)})$$

Particle method

- particle method:
 - choose points $z_1, \ldots, z_K \in \mathcal{T}^{(k)}$ (*e.g.*, all vertices, some vertices, grid, random, ...)
 - evaluate $y_i = f(z_i)$
 - fit data (z_i, y_i) with convex (affine) function (using convex optimization)
- advantages:
 - handles nondifferentiable functions, or functions for which evaluating derivatives is difficult
 - gives regional models, which depend on current point and trust region radii ρ_i

Fitting affine or quadratic functions to data

fit convex quadratic function to data (z_i, y_i)

minimize $\sum_{i=1}^{K} ((z_i - x^{(k)})^T P(z_i - x^{(k)}) + q^T (z_i - x^{(k)}) + r - y_i)^2$ subject to $P \succeq 0$

with variables $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, $r \in \mathbf{R}$

- can use other objectives, add other convex constraints
- no need to solve exactly
- this problem is solved for each nonconvex constraint, each SCP step

Quasi-linearization

- a cheap and simple method for affine approximation
- write h(x) as A(x)x + b(x) (many ways to do this)

• use
$$\hat{h}(x) = A(x^{(k)})x + b(x^{(k)})$$

• example:

$$h(x) = (1/2)x^T P x + q^T x + r = ((1/2)P x + q)^T x + r$$

•
$$\hat{h}_{ql}(x) = ((1/2)Px^{(k)} + q)^T x + r$$

•
$$\hat{h}_{tay}(x) = (Px^{(k)} + q)^T (x - x^{(k)}) + h(x^{(k)})$$

Example

• nonconvex QP

$$\begin{array}{ll} \mbox{minimize} & f(x) = (1/2) x^T P x + q^T x \\ \mbox{subject to} & \|x\|_\infty \leq 1 \end{array}$$

with P symmetric but not PSD

• use approximation

 $f(x^{(k)}) + (Px^{(k)} + q)^T (x - x^{(k)}) + (1/2)(x - x^{(k)})^T P_+(x - x^{(k)})$

- example with $x \in \mathbf{R}^{20}$
- SCP with $\rho = 0.2$, started from 10 different points

- runs typically converge to points between -60 and -50
- dashed line shows lower bound on optimal value ≈ -66.5

Lower bound via Lagrange dual

• write constraints as $x_i^2 \leq 1$ and form Lagrangian

$$L(x,\lambda) = (1/2)x^T P x + q^T x + \sum_{i=1}^n \lambda_i (x_i^2 - 1)$$
$$= (1/2)x^T (P + 2\operatorname{diag}(\lambda)) x + q^T x - \mathbf{1}^T \lambda$$

•
$$g(\lambda) = -(1/2)q^T \left(P + 2\operatorname{diag}(\lambda)\right)^{-1} q - \mathbf{1}^T \lambda$$
; need $P + 2\operatorname{diag}(\lambda) \succ 0$

• solve dual problem to get best lower bound:

maximize $-(1/2)q^T \left(P + 2\operatorname{diag}(\lambda)\right)^{-1} q - \mathbf{1}^T \lambda$ subject to $\lambda \succeq 0, \quad P + 2\operatorname{diag}(\lambda) \succ 0$

Some (related) issues

- approximate convex problem can be infeasible
- how do we evaluate progress when $x^{(k)}$ isn't feasible? need to take into account
 - objective $f_0(x^{(k)})$
 - inequality constraint violations $f_i(x^{(k)})_+$
 - equality constraint violations $|h_i(x^{(k)})|$
- controlling the trust region size
 - ρ too large: approximations are poor, leading to bad choice of $x^{(k+1)}$
 - ρ too small: approximations are good, but progress is slow

Exact penalty formulation

• instead of original problem, we solve unconstrained problem

minimize $\phi(x) = f_0(x) + \lambda \left(\sum_{i=1}^m f_i(x)_+ + \sum_{i=1}^p |h_i(x)| \right)$

where $\lambda > 0$

- for λ large enough, minimizer of ϕ is solution of original problem
- for SCP, use convex approximation

$$\hat{\phi}(x) = \hat{f}_0(x) + \lambda \left(\sum_{i=1}^m \hat{f}_i(x)_+ + \sum_{i=1}^p |\hat{h}_i(x)| \right)$$

• approximate problem always feasible

Trust region update

- judge algorithm progress by decrease in $\phi,$ using solution \tilde{x} of approximate problem
- decrease with approximate objective: $\hat{\delta} = \phi(x^{(k)}) \hat{\phi}(\tilde{x})$ (called *predicted decrease*)
- decrease with exact objective: $\delta = \phi(x^{(k)}) \phi(\tilde{x})$
- if $\delta \ge \alpha \hat{\delta}$, $\rho^{(k+1)} = \beta^{\text{succ}} \rho^{(k)}$, $x^{(k+1)} = \tilde{x}$ ($\alpha \in (0, 1)$, $\beta^{\text{succ}} \ge 1$; typical values $\alpha = 0.1$, $\beta^{\text{succ}} = 1.1$)
- if $\delta < \alpha \hat{\delta}$, $\rho^{(k+1)} = \beta^{\text{fail}} \rho^{(k)}$, $x^{(k+1)} = x^{(k)}$ $(\beta^{\text{fail}} \in (0, 1)$; typical value $\beta^{\text{fail}} = 0.5$)
- interpretation: if actual decrease is more (less) than fraction α of predicted decrease then increase (decrease) trust region size

Nonlinear optimal control

• 2-link system, controlled by torques τ_1 and τ_2 (no gravity)

- dynamics given by $M(\theta)\ddot{\theta} + W(\theta,\dot{\theta})\dot{\theta} = \tau$, with

$$M(\theta) = \begin{bmatrix} (m_1 + m_2)l_1^2 & m_2l_1l_2(s_1s_2 + c_1c_2) \\ m_2l_1l_2(s_1s_2 + c_1c_2) & m_2l_2^2 \end{bmatrix}$$
$$W(\theta, \dot{\theta}) = \begin{bmatrix} 0 & m_2l_1l_2(s_1c_2 - c_1s_2)\dot{\theta}_2 \\ m_2l_1l_2(s_1c_2 - c_1s_2)\dot{\theta}_1 & 0 \end{bmatrix}$$

$$s_i = \sin \theta_i$$
, $c_i = \cos \theta_i$

• nonlinear optimal control problem:

$$\begin{array}{ll} \text{minimize} & J = \int_0^T \|\tau(t)\|_2^2 dt \\ \text{subject to} & \theta(0) = \theta_{\text{init}}, \quad \dot{\theta}(0) = 0, \quad \theta(T) = \theta_{\text{final}}, \quad \dot{\theta}(T) = 0 \\ \|\tau(t)\|_{\infty} \leq \tau_{\max}, \quad 0 \leq t \leq T \end{array}$$

Discretization

- discretize with time interval h = T/N
- $J \approx h \sum_{i=1}^{N} \|\tau_i\|_2^2$, with $\tau_i = \tau(ih)$
- approximate derivatives as

$$\dot{\theta}(ih) \approx \frac{\theta_{i+1} - \theta_{i-1}}{2h}, \qquad \ddot{\theta}(ih) \approx \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2}$$

• approximate dynamics as set of nonlinear equality constraints:

$$M(\theta_i)\frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} + W\left(\theta_i, \frac{\theta_{i+1} - \theta_{i-1}}{2h}\right)\frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i$$

•
$$\theta_0 = \theta_1 = \theta_{\text{init}}; \ \theta_N = \theta_{N+1} = \theta_{\text{final}}$$

• discretized nonlinear optimal control problem:

minimize
$$h \sum_{i=1}^{N} \|\tau_i\|_2^2$$

subject to $\theta_0 = \theta_1 = \theta_{\text{init}}, \quad \theta_N = \theta_{N+1} = \theta_{\text{final}}$
 $\|\tau_i\|_{\infty} \leq \tau_{\max}, \quad i = 1, \dots, N$
 $M(\theta_i) \frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} + W\left(\theta_i, \frac{\theta_{i+1} - \theta_{i-1}}{2h}\right) \frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i$

• replace equality constraints with quasilinearized versions

$$M(\theta_i^{(k)})\frac{\theta_{i+1} - 2\theta_i + \theta_{i-1}}{h^2} + W\left(\theta_i^{(k)}, \frac{\theta_{i+1}^{(k)} - \theta_{i-1}^{(k)}}{2h}\right)\frac{\theta_{i+1} - \theta_{i-1}}{2h} = \tau_i$$

- trust region: only on θ_i
- initialize with $heta_i = ((i-1)/(N-1))(heta_{ ext{init}})$, $i=1,\ldots,N$

Numerical example

- $m_1 = 1$, $m_2 = 5$, $l_1 = 1$, $l_2 = 1$
- N = 40, T = 10

•
$$\theta_{\text{init}} = (0, -2.9), \ \theta_{\text{final}} = (3, 2.9)$$

•
$$\tau_{\rm max} = 1.1$$

•
$$\alpha = 0.1$$
, $\beta^{\text{succ}} = 1.1$, $\beta^{\text{fail}} = 0.5$, $\rho^{(1)} = 90^{\circ}$

• $\lambda = 2$

SCP progress

Convergence of \boldsymbol{J} and torque residuals

Predicted and actual decreases in ϕ

Trajectory plan

Convex composite

• general form: for $h : \mathbf{R}^m \to \mathbf{R}$ convex, $c : \mathbf{R}^n \to \mathbf{R}^m$ smooth,

$$f(x) = h(c(x))$$

• exact penalty formulation of

minimize
$$f(x)$$
 subject to $c(x) = 0$

• approximate f locally by *convex* approximation: near x,

$$f(y) \approx \hat{f}_x(y) = h(c(x) + \nabla c(x)^T (y - x))$$

Convex composite (prox-linear) algorithm

given function $f = h \circ c$ and convex domain C,

line search parameters $\alpha \in (0,.5), \ \beta \in (0,1),$ stopping tolerance $\epsilon > 0$ k := 0

repeat

Use model
$$\hat{f} = f_{x^{(k)}}$$

Set $\hat{x}^{(k+1)} = \operatorname{argmin}_{x \in \mathcal{C}} \{\hat{f}(x)\}$ and direction $\Delta^{(k+1)} = \hat{x}^{(k+1)} - x^{(k)}$
Set $\delta^{(k)} = \hat{f}(x^{(k)} + \Delta^{(k)}) - f(x^{(k)})$
Set $t = 1$
while $f(x^{(k)} + t\Delta^{(k)}) \ge f(x^{(k)}) + \alpha t \delta^{(k)}$
 $t = \beta \cdot t$
If $\|\Delta^{(k+1)}\|_2 / t \le \epsilon$, quit
 $k := k + 1$

Nonlinear measurements (phase retrieval)

• phase retrieval problem: for $a_i \in \mathbf{C}^n$, $x_{\star} \in \mathbf{C}^n$, observe

$$b_i = |a_i^* x_\star|^2$$

• goal is to find x, natural objectives are of form

$$f(x) = \left\| |Ax|^2 - b \right\|$$

• "robust" phase retrieval problem

$$f(x) = \sum_{i=1}^{m} \left| |a_i^* x|^2 - b_i \right|$$

or quadratic objective

$$f(x) = \frac{1}{2} \sum_{i=1}^{m} \left(|a_i^* x|^2 - b_i \right)^2$$

Numerical example

- m = 200, n = 50, over reals **R** (sign retrieval)
- Generate 10 independent examples, $A \in \mathbf{R}^{m imes n}$, $b = |Ax_{\star}|^2$,

$$A_{ij} \sim \mathcal{N}(0,1), \quad x_{\star} \sim \mathcal{N}(0,I)$$

• Two sets of experiments: initialize at

$$x^{(0)} \sim \mathcal{N}(0, I)$$
 or $x^{(0)} \sim \mathcal{N}(x_{\star}, I)$

• Use $h(z) = ||z||_1$ or $h(z) = ||z||_2^2$, $c(x) = (Ax)^2 - b$.

Numerical example (absolute loss, random initialization)

Numerical example (absolute loss, good initialization)

Numerical example (squared loss, random init)

Numerical example (squared loss, good init)

Extensions and convergence of basic prox-linear method

• regularization or "trust" region: update

$$x^{(k+1)} = \underset{x \in \mathcal{C}}{\operatorname{argmin}} \left\{ h(c(x^{(k)}) + \nabla c(x^{(k)})^T (x - x^{(k)})) + \frac{1}{2\alpha_k} \|x - x^{(k)}\|_2^2 \right\}$$

- with line search or α_k small enough, lower bound on $\inf_x f(x) = \inf_x h(c(x)) > -\infty$, guaranteed to converge to stationary point
- When $h(z) = ||z||_2^2$, often called 'Gauss–Newton' method, some variants called 'Levenberg–Marquardt'

'Difference of convex' programming

• express problem as

minimize
$$f_0(x) - g_0(x)$$

subject to $f_i(x) - g_i(x) \le 0$, $i = 1, ..., m$

where f_i and g_i are convex

- $f_i g_i$ are called 'difference of convex' functions
- problem is sometimes called 'difference of convex programming'

Convex-concave procedure

• obvious convexification at $x^{(k)}$: replace f(x) - g(x) with

$$\hat{f}(x) = f(x) - g(x^{(k)}) - \nabla g(x^{(k)})^T (x - x^{(k)})$$

- since $\hat{f}(x) \ge f(x)$ for all x, no trust region is needed
 - true objective at \tilde{x} is better than convexified objective
 - true feasible set contains feasible set for convexified problem
- SCP sometimes called 'convex-concave procedure'

Example (BV §7.1)

- given samples $y_1, \ldots, y_N \in \mathbf{R}^n$ from $\mathcal{N}(0, \Sigma^{\text{true}})$
- negative log-likelihood function is

$$f(\Sigma) = \log \det \Sigma + \operatorname{Tr}(\Sigma^{-1}Y), \qquad Y = (1/N) \sum_{i=1}^{N} y_i y_i^T$$

(dropping a constant and positive scale factor)

• ML estimate of Σ , with prior knowledge $\Sigma_{ij} \ge 0$:

minimize
$$f(\Sigma) = \log \det \Sigma + \operatorname{Tr}(\Sigma^{-1}Y)$$

subject to $\Sigma_{ij} \ge 0, \quad i, j = 1, \dots, n$

with variable Σ (constraint $\Sigma \succ 0$ is implicit)

- first term in f is concave; second term is convex
- linearize first term in objective to get

$$\hat{f}(\Sigma) = \log \det \Sigma^{(k)} + \operatorname{Tr}\left((\Sigma^{(k)})^{-1}(\Sigma - \Sigma^{(k)})\right) + \operatorname{Tr}(\Sigma^{-1}Y)$$

Numerical example

convergence of problem instance with n = 10, N = 15

Alternating convex optimization

- given nonconvex problem with variable $(x_1, \ldots, x_n) \in \mathbf{R}^n$
- $\mathcal{I}_1, \ldots, \mathcal{I}_k \subset \{1, \ldots, n\}$ are index subsets with $\bigcup_j \mathcal{I}_j = \{1, \ldots, n\}$
- suppose problem is convex in subset of variables x_i , $i \in \mathcal{I}_j$, when x_i , $i \notin \mathcal{I}_j$ are fixed
- alternating convex optimization method: cycle through j, in each step optimizing over variables x_i , $i \in \mathcal{I}_j$
- special case: bi-convex problem
 - x = (u, v); problem is convex in u(v) with v(u) fixed
 - alternate optimizing over \boldsymbol{u} and \boldsymbol{v}

Nonnegative matrix factorization

• NMF problem:

 $\begin{array}{ll} \mbox{minimize} & \|A - XY\|_F\\ \mbox{subject to} & X_{ij}, \ Y_{ij} \geq 0 \end{array}$ variables $X \in \mathbf{R}^{m \times k}$, $Y \in \mathbf{R}^{k \times n}$, data $A \in \mathbf{R}^{m \times n}$

- difficult problem, except for a few special cases (e.g., k = 1)
- alternating convex optimation: solve QPs to optimize over X, then Y, then X . . .

Example

• convergence for example with m = n = 50, k = 5 (five starting points)

