Sequential Convex Programming

e sequential convex programming
e alternating convex optimization

e convex-concave procedure
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Methods for nonconvex optimization problems

e convex optimization methods are (roughly) always global, always fast

e for general nonconvex problems, we have to give up one

— local optimization methods are fast, but need not find global
solution (and even when they do, cannot certify it)

— global optimization methods find global solution (and certify it),
but are not always fast (indeed, are often slow)

e this lecture: local optimization methods that are based on solving a
sequence of convex problems
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Sequential convex programming (SCP)

e a local optimization method for nonconvex problems that leverages
convex optimization

— convex portions of a problem are handled ‘exactly’ and efficiently

e SCP is a heuristic

— it can fail to find optimal (or even feasible) point
— results can (and often do) depend on starting point
(can run algorithm from many initial points and take best result)

e SCP often works well, i.e., finds a feasible point with good, if not
optimal, objective value
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Problem

we consider nonconvex problem

minimize  fo(z)
subject to  f;(z) <0,
hi(x) =0,

with variable £ € R"

e fo and f; (possibly) nonconvex

e h; (possibly) non-affine
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Basic idea of SCP

e maintain estimate of solution z¥) and convex trust region T() = R™
e form convex approximation f’z of f; over trust region T (¥)
e form affine approximation h; of h; over trust region T (F)

o z(Ft1) is optimal point for approximate convex problem

subject to fz(iﬂ) <0, z2=1,....,m
hz(x) — 07 v = 1, y D
z e T
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Trust region

e typical trust region is box around current point:

e if x; appears only in convex inequalities and affine equalities, can take
Pi = 0
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Affine and convex approximations via Taylor expansions

e (affine) first order Taylor expansion:

f@) = f@™) + VP (2 - 2®)

e (convex part of) second order Taylor expansion:

A

f(z) = @) + V@) (@ —2W) + (1/2)(@ — 2) TPz —2V)
P = (VQf(x(k)))+, PSD part of Hessian

e give local approximations, which don't depend on trust region radii p;
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Quadratic trust regions

e full second order Taylor expansion:

A

f@) = F@D)+9 @) (@=a)+(1/2) (0292 (@) 2 -2V,

e trust region is compact ellipse around current point: for some P > 0

T =z | (@ —2®) TPz —2®) < p)

e Update is any z(**1 for which there is A > 0 s.t.

V2F(F) 4+ AP =0, A(||Jz*tY|,—1) =0,
(V2 (@) +AP)e™) = =V f (™)
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Particle method

e particle method:

— choose points z1,...,zx € T®)

(e.g., all vertices, some vertices, grid, random, . . .)
— evaluate y; = f(2;)
— fit data (z;,y;) with convex (affine) function

(using convex optimization)

e advantages:

— handles nondifferentiable functions, or functions for which evaluating

derivatives is difficult
— gives regional models, which depend on current point and trust

region radii p;
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Fitting affine or quadratic functions to data

fit convex quadratic function to data (z;, ;)

minimize Zfil ((Zz — zUNTP(z; — 2W)) + ¢" (2 — ) 47 — y’i)Q
subjectto P >0

with variables P € S, ¢ € R", r € R

e can use other objectives, add other convex constraints
e no need to solve exactly

e this problem is solved for each nonconvex constraint, each SCP step
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Quasi-linearization
e a cheap and simple method for affine approximation
e write h(x) as A(x)x + b(x) (many ways to do this)
o use h(z) = A(z®)z + b(z™*)
e example:

hz) = (1/2)zT P+ ¢z +r=(1/2)Pr+q) z+r

o ﬁql(:c) = ((1/2)Pz®) + )Tz + 7

o hiay(z) = (P2® + )T (z — 2®) + h(z®)
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Example

e nonconvex QP

minimize  f(z) = (1/2)2! Pz + q'x
subject to  ||7||e0 < 1

with P symmetric but not PSD

® use approximation

F@®) + (P 4 ) (@ = 2®) + (1/2)(w — )Py (o — 2 V)
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e example with 2 € R?

e SCP with p = 0.2, started from 10 different points

-10

-20

-30+

—40}F

f(z™®)

-50F

-60F

=70

e runs typically converge to points between —60 and —50

e dashed line shows lower bound on optimal value ~ —66.5
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Lower bound via Lagrange dual

e write constraints as 7 < 1 and form Lagrangian

L(z,\) = (1/2)2"Pr+q"z+) N2} 1)
1=1

= (1/2)2’ (P +2diag(\))z + ¢’z — 17\

o g(\) = —(1/2)¢T (P + 2diag()\) "¢ — 17X; need P + 2diag()\) = 0
e solve dual problem to get best lower bound:

maximize —(1/2)¢” (P + 2diag()\))” "¢ — 17\
subjectto A >0, P+ 2diag(\) >0
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Some (related) issues

e approximate convex problem can be infeasible
e how do we evaluate progress when z(¥) isn't feasible?
need to take into account
— objective fo(z(®)
— inequality constraint violations f;(z(*))
— equality constraint violations |h;(z(*))|

e controlling the trust region size

— p too large: approximations are poor, leading to bad choice of z(F+1)
— p too small: approximations are good, but progress is slow
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Exact penalty formulation

e instead of original problem, we solve unconstrained problem

minimize ¢(z) = fo(z) + X O, filx)+ + D0, |hi(x)])

where A > 0
e for A\ large enough, minimizer of ¢ is solution of original problem

e for SCP, use convex approximation
A A m A p A
¢(z) = folz) + A <Z film)+ +> hz‘(@)
i=1 i=1

e approximate problem always feasible
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Trust region update

e judge algorithm progress by decrease in ¢, using solution x of
approximate problem

e decrease with approximate objective: § = ¢(z(*¥)) — (&)
(called predicted decrease)

e decrease with exact objective: § = ¢(x(¥)) — ¢(2)

o if > 045, p(kz—}—l) — Bsuccp(k:)’ ZC(k+1) — 7
(a € (0,1), p54¢ > 1; typical values a = 0.1, g%"¢ = 1.1)

o if § < ad, pth = ghilpk), p(+1) — ()
(Bl € (0,1); typical value Bl = (.5)

e interpretation: if actual decrease is more (less) than fraction « of
predicted decrease then increase (decrease) trust region size
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Nonlinear optimal control

e 2-link system, controlled by torques 71 and 7 (no
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e dynamics given by M(0)0 + W (0,60)0 = 7, with

M(O) = [ (m1 + mog)l% molyla(s152 + c1¢2)
o i m2l1l2(8182 -+ 61(32) mglg
: I 0 m2l1l2(8162 — 0182)6)2
0,0) = :
W( ’ ) i mglllz(slcg — 6182)91 0

S; = sin 92', C;, = COS 6’1
e nonlinear optimal control problem:

minimize J = [ Im(t)]13 dt |
SUbjeCt to 6(0) = Hinita H(O) =0, @(T) — Hﬁnala H(T) — 0
|7(t) oo < Tmax, 0<t<T
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Discretization

e discretize with time interval h =T /N
o JhY, ||Imll3, with ; = 7(ih)

e approximate derivatives as

: 0,01 —0;_ .
O(ih) ~ +12h9 L

O(ih) ~

Oit1—20; +0;1

h2

e approximate dynamics as set of nonlinear equality constraints:

Oi1 — 20; + 0;_
M (6;)7H h2+ 1+W(97;,

o Oy =01 =0 On = 9N+1 = Ofinal
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e discretized nonlinear optimal control problem:

minimize h Zfil 17115

subject to (90 = (91 = Hinit, 9]\7 — ‘9N—|—1 = Hﬁnal

“Til‘OOSTmaxy Z:].,,N
0;41—20,+0;_ 0., 1—0. 0: 1 1—0:
M(ez) 1+1 hz@ —1 _|_ W ((9“ z—|—12h 7 1) z—|—12h i—1 — T

e replace equality constraints with quasilinearized versions

0.1 — 20, +6;_ o 9"\ g g,
M(@@(k)) +1 h2 _|_ 1 _|_ W <9£k>7 ’L+12h 1—1 ‘|‘12h 1

e trust region: only on 6,

o initialize with 8; = ((i — 1)/(N — 1))(0gnal — Oinic), i = 1,..., N
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Numerical example

emi=1me=51L=11Il=1

o N =40,T =10

o Oinit = (0, —2.9), Oapa = (3,2.9)

® Tax = 1.1

o a=0.1, gsuce = 1.1, gl = 0.5, p(I) = 90°

o \—=2
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Convergence of J and torque residuals
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Predicted and actual decreases in
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Trajectory plan
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Convex composite

e general form: for h: R™ — R convex, ¢: R” — R™ smooth,

e exact penalty formulation of

minimize f(x) subject to ¢(x) =0

e approximate f locally by convex approximation: near z,

f(y) = fuly) = hc(z) + Ve(z)" (y — 2))
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Convex composite (prox-linear) algorithm

given function f = h o ¢ and convex domain C,

line search parameters o € (0,.5), 5 € (0, 1), stopping tolerance € > 0
k:=0
repeat

Use model f = J k)

Set #(**1) = argmin,.{f(z)} and direction A+ = z(k+1) _ 5(k)

Set §) = f(z(®) + ARy — f(2(F)

Sett=1

while f(z®) +tA®) > f(2F)) 4 ats*)

t=3-1
If JAED o/t <, quit
k:=k+1
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Nonlinear measurements (phase retrieval)

e phase retrieval problem: for a; € C", z, € C", observe

b; = |a;<x*\2

e goal is to find x, natural objectives are of form
x) = H|Aw\2 — bH

e ‘robust” phase retrieval problem

m
=3 [lazal? -
1=1

or quadratic objective
1 X
) =52 (lajzl” -
1=1
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Numerical example

e m = 200,n = 50, over reals R (sign retrieval)

o Generate 10 independent examples, A € R™*", b = |Ax,|?,

A@'jNN(O,l), QZ*NN(O,I)

e Two sets of experiments: initialize at

20 ~ N(,I) or 20 ~ N(z,, 1)
o Use h(z) = ||z]|1 or h(2) = ||2||3, c(x) = (Ax)* —b.
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Numerical example (absolute loss, random initialization)

103 .

20
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Numerical example (absolute loss, good initialization)

103 .

102 3

— 101 ‘
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Numerical example (squared loss, random init)

10! 3

10° ‘M‘
] —
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10_23
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Numerical example (squared loss, good init)

101 5

1074

107>

106
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1.0 1.5 2.0 2.5 k3.0 3.5 4.0 4.5 5.0
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Extensions and convergence of basic prox-linear method

e regularization or “trust” region: update

1
1) = argmin {h(c(x(k>) + Ve(z" ) (2 — a™) + — ||z — $<k)’|g}
xeC 2ay

e with line search or a; small enough, lower bound on
inf, f(z) =inf, h(c(x)) > —o0, guaranteed to converge to stationary
point

e When h(z) = ||z]|3, often called 'Gauss—Newton' method, some variants
called 'Levenberg—Marquardt’
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‘Difference of convex’ programming

e express problem as

minimize  fo(x) — go(x)
subject to  fi(x) —gi(z) <0, i=1,...,m

where f; and g; are convex
e f, — g; are called ‘difference of convex’' functions

e problem is sometimes called ‘difference of convex programming’
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Convex-concave procedure
e obvious convexification at z(*): replace f(z) — g(z) with

f(z) = f(x) = g(z) = Vg(z™)T (& — ™)

e since f(z) > f(x) for all z, no trust region is needed

— true objective at x is better than convexified objective
— true feasible set contains feasible set for convexified problem

e SCP sometimes called ‘convex-concave procedure’
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Example (BV §7.1)

e given samples y1,...,ynx € R" from N(07 Etrue)

e negative log-likelihood function is
N
f(£) =logdet L+ Tr(27'Y), Y =(1/N)) vy
i=1

(dropping a constant and positive scale factor)

e ML estimate of X, with prior knowledge ;; > O:

minimize  f(X) = logdet X + Tr(X~'Y)
subject to >;; >0, 4,7=1,...,n

with variable 3 (constraint % > 0 is implicit)
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e first term in f is concave; second term is convex

e linearize first term in objective to get

A

F(2) =logdet =F) 4+ Ty ((2<k>)—1(2 - z“f))) + Tr(271Y)
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Numerical example

convergence of problem instance with n =10, N =15
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Alternating convex optimization
e given nonconvex problem with variable (z4,...,x,) € R"
 T1,..., I C{1,...,n} are index subsets with | J, Z; = {1,...,n}

e suppose problem is convex in subset of variables x;, 1 € Z;,
when z;, © € Z; are fixed

e alternating convex optimization method: cycle through j, in each step
optimizing over variables x;, 1 € Z;

e special case: bi-convex problem

— x = (u,v); problem is convex in u (v) with v (u) fixed
— alternate optimizing over u and v
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Nonnegative matrix factorization

e NMF problem:
minimize ||A — XY ||F
subject to  X;;, Y;; >0

variables X € R”™** ¥ € R**" data A € R™*"
e difficult problem, except for a few special cases (e.g., k = 1)

e alternating convex optimation: solve QPs to optimize over X, then Y,
then X . ..
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Example

e convergence for example with m =n =50, £k =5
(five starting points)

30
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