
Sequential Convex Programming

John Duchi (with help from Stephen Boyd and Jacob Mattingley)
Notes for EE364b, Stanford University

Spring 2018

Contents

1 Methods for nonconvex optimization problems 1
1.1 Sequential convex programming (SCP) . 2

2 Trust region methods 3
2.1 A numerical example . 4
2.2 The classical trust region method . 5
2.3 Regularized methods . 7
2.4 Convex-concave procedure . 8
2.5 A basic sequential convex programming method 8

3 Convex modeling approaches 9
3.1 Particle methods . 9
3.2 Composite optimization . 11

4 Examples 13
4.1 Nonlinear optimal control . 13
4.2 Phase retrieval . 13

5 Convergence of majorization-minimization 13
5.1 Nearly stationary points . 15
5.2 Convergence of majorization-minimization 17

1 Methods for nonconvex optimization problems

The power of modeling problems as convex optimization problems should by now be fairly
obvious to you: convex optimization problems are (roughly) always globally solvable, and it
is (roughly) always fast to solve them. There are of course caveats as problem sizes grow
large, but in general, we have both desiderata: problems are solvable, and we can solve them

1

quickly. Some problems, however, are challenging to model as convex optimization problems,
at least in a global sense, and so we have to give up one of these two desiderata. With that
in mind, we can consider two families of methods:

local optimization methods These methods are fast, but do not necessarily find globally
optimal solutions. Even if they do find a globally optimal solution, it is often impossible
to certify that it is indeed globally optimal.

global optimization methods These methods find global solutions and certify them (for
example, branch and bound methods) but they are not always fast. (Indeed, they are
often slow.)

In these notes, we investigate the first family of methods: local optimization methods.
These methods are heuristic, they often fail to find optimal (or even feasible) points, and
their results depend on their initial starting points. With that said, they are often effective
in practice, and one can always run each method multiple times from multiple starting points
in order to get a good enough solution.

1.1 Sequential convex programming (SCP)

Sequential convex programming (SCP) is a local optimization method for nonconvex prob-
lems that leverages convex optimization. The basic idea is simple: we handle the convex
portions of the problem exactly and efficiently, while for the nonconvex portions of the
problem, we model them by convex functions that are (at least locally) accurate.

One way to motivate SCP strategies is to reconsider the classical gradient and Newton
methods. A typical optimization scheme for minimizing a function f iterates in the following
way: at iteration k, we form a model f̂ of f that is “good enough” near the current iterate
x(k), minimize that model or a regularized version of it, and repeat. To see that gradient
descent is like this, note that we can rewrite the iteration

x(k+1) = x(k) − αk∇f(x(k))

as

x(k+1) = argmin
x

{
f(x(k)) + ∇f(x(k))T (x− x(k)) +

1

2αk

∥∥x− x(k)
∥∥2
2

}
.

Thus, in this case, we have the first-order model f̂(x) = f(x(k)) + ∇f(x(k))T (x − x(k)), and
we regularize (to keep the points close enough that the model is accurate) by 1

2αk

‖· − x(k)‖22.
Newton’s method, on the other hand, uses the quadratic model

f̂(x) = f(x(k)) + ∇f(x(k))T (x− x(k)) +
1

2
(x− x(k))T∇2f(x(k))(x− x(k)).

Sequential convex programming, broadly, simply refers to using a convex model f̂ and re-
peatedly minimizing it.

2

To set the stage, we consider the (potentially nonconvex) problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

(1)

in the variable x ∈ Rn. Here, the functions f0 and fi are (possibly) nonconvex, and the
functions hj may be non-affine. Then the basic idea of SCP is to iterate by maintaining an
estimate of the solution x(k) and a convex trust region, denoted T (k) ⊂ Rn, over which we
“trust” our solutions and models. The generic SCP strategy then forms a

• convex approximation f̂i of the functions fi over the trust region T (k)

• affine approximation ĥi of the functions hi over the trust region T (k).

We then iterate by setting x(k+1) to be the optimal point for the approximating convex model
of the original problem (1),

minimize f̂0(x)

subject to f̂i(x) ≤ 0, i = 1, . . . ,m

ĥj(x) = 0, j = 1, . . . , p

x ∈ T (k).

(2)

In the remainder of these notes, we describe several of the standard approaches to modeling
problem (1) and solving (2).

2 Trust region methods

Trust region methods are the classical workhorse for sequential convex programming, and
typically involve sequential quadratic programming. For these, we take either first- or second-
order models in the approximation (2), and the trust region is typically either an ℓ2-norm
ball

T (k) =
{
x ∈ Rn |

∥∥x− x(k)
∥∥
2
≤ ρ
}

or a box
T (k) =

{
x ∈ Rn | |xi − x

(k)
i | ≤ ρi, i = 1, . . . , n

}
.

As we will see, the former case allows somewhat more flexibility in our modeling strategies,
while for the latter, we can leave indices xi only involved in convex objectives and inequalities
and linear equalities unconstrained (i.e. ρi = +∞).

Then, for the models f̂ we take either an affine (first-order) Taylor approximation

f̂(x) = f(x(k)) + ∇f(x(k))T (x− x(k))

3

or the convex part of the second order Taylor expansion,

f̂(x) = f(x(k)) + ∇f(x(k))T (x− x(k)) +
1

2
(x− x(k))TP (x− x(k)),

where P =
[
∇2f(x(k))

]
+

is the positive semidefinite part of the Hessian. That is, if UΛUT =

∇2f(x(k)) is the spectral decomposition of ∇2f(x(k)), then P = U [Λ]+ UT , which simply

zeroes out all negative eigenvalues of ∇2f(x(k)). These approximations are good locally, but
the radius ρ in the trust regions is still important so that they are good local estimates.

2.1 A numerical example

To get a sense of some of the issues in these problems, we begin by working out a small scale
numerical example of a non-convex quadratic problem, minimized over a box. The problem
is

minimize f(x) =
1

2
xTPx + qTx

subject to ‖x‖∞ ≤ 1,

where P is symmetric but not positive semindefinite. In this case, we may write the first-
order Taylor approximation to f at a point x(k) as f(x(k)) + (Px(k) + q)T (x− x(k)) + 1

2
(x−

x(k))TP (x−x(k)). Then applying the idea of making a “good enough” convex approximation,
we use

f̂(x) = f(x(k)) + (Px(k) + q)T (x− x(k)) +
1

2
(x− x(k))TP+(x− x(k))

where P+ is the projection of P onto the space of PSD matrices. In Figure 1, we display
the convergence of 10 different random initializes x(0) in the box ‖x‖∞ ≤ 1, in dimension

n = 20. Here, we iteratively minimize the approximations f̂(x) centered at x(k) over the
trust regions T (k) = {x ∈ Rn |

∥∥x− x(k)
∥∥
∞

≤ ρ}, where ρ = .2.
From the figure, we see a few different results: first, the intialization changes performance,

sometimes substantially. Second, it is never clear that we have actually solved the problem;
none of the methods converges to the lower bound, but the lower bound may be loose.
To derive a lower bound on the problem, we can take its Lagrange dual. In this case,
the representation of the constraints is quite important; if we do not use an appropriate
functional form, then the dual problem can easily be identically −∞. With this in mind, we
rewrite the constraint ‖x‖∞ ≤ 1 as x2

i ≤ 1 for i = 1, . . . , n, obtaining Lagrangian

L(x, λ) =
1

2
xTPx + qTx +

n∑

i=1

λi(x
2
i − 1)

=
1

2
xT (P + 2 diag(λ))x + qTx− 1Tλ,

so that the dual function has form

g(λ) = −
1

2
qT (P + 2 diag(λ))−1q − 1Tλ when P + 2 diag(λ) ≻ 0,

4

5 10 15 20 25 30
−70

−60

−50

−40

−30

−20

−10

k

f
(x

(k
))

Figure 1. Convergence of a sequential convex programming approach for a nonconvex
quadratic program over the box ‖x‖∞ ≤ 1. The dashed line indicates a lower bound from
a Lagrangian dual problem.

where we have been a bit fast and loose in the inversion (assuming Pq 6= 0 makes this
rigorous). Thus, we obtain dual problem

maximize −
1

2
qT (P + 2 diag(λ))−1q − 1Tλ

subject to λ � 0, P + 2 diag(λ) ≻ 0,

in variables λ � 0, which is a convex optimization problem. While there may be other
possible dual problems—which is common in non-convex optimization—solving this problem
provides the lower bound in Fig. 1.

2.2 The classical trust region method

In the classical trust region problem, as treated (for example) by Conn, Gould, and Toint,
one uses the set T (k) = {x ∈ Rn |

∥∥x− x(k)
∥∥
2
} ≤ ρ as the trust region. Without loss

of generality taking ρ = 1, in this case, assuming there are no constraints on x, it is not
necessary to project the Hessian into the positive definite cone, because the problem

minimize
1

2
xTAx + bTx

subject to ‖x‖2 ≤ 1
(3)

is efficiently solvable. The reasons for this involve the S-procedure and theorems of alterna-
tives for non-convex quadratic problems (see Appendix B of [BV04]), though we can provide
a reasonably simple characterization of solutions to the problem (3). Indeed, we have the
following theorem.

5

Theorem 1. A point x⋆ is optimal for the trust region problem (3) if and only if there exists
λ⋆ ≥ 0 such that

A + λ⋆I � 0, (A + λ⋆I)x⋆ + b = 0, λ⋆(‖x⋆‖2 − 1) = 0.

If A + λ⋆ ≻ 0, then the solution x⋆ is unique.

Proof We ignore the uniqueness result, proving the rest of the theorem. First, let us
suppose that the pair (x⋆, λ⋆) satisfies the three conditions of the theorem. Writing the
Lagrangian of the objective, we have

L(x, λ) =
1

2
xTAx + bTx +

λ

2
(‖x‖22 − 1).

Then under the three conditions, we see that

L(x⋆, λ) ≤ L(x⋆, λ⋆) ≤ L(x, λ⋆)

for all x ∈ Rn and λ ≥ 0, so that the pair (x⋆, λ⋆) form a saddle point for the Lagrangian.
They are thus optimal.

The question of the existence of λ⋆ ≥ 0 is all that remains. Let A = UDUT be the spectral
decomposition of A, with D = diag(d) for some d ∈ Rn. We shall assume that d 6� 0, as
otherwise the problem is convex and the result is immediate. Thus, let d1 ≥ . . . ≥ dn with
dn < 0. We consider two cases, based on whether uT

nb 6= 0 for the nth eigenvector of A. In
the first case, we suppose that bTun 6= 0. Then we have that limλ→∞ ‖(A + λI)−1b‖2 = 0
and limλ↓−dn ‖(A + λI)−1b‖2 = ∞, so there exists a λ > −dn > 0 such that

x = −(A + λI)−1b satisfies ‖x‖2 = 1,

so that all the conditions of the theorem are satisfied.
In the so-called “hard case,” which corresponds to uT

nb = 0, we take λ = −dn. Then
xλ = −(A + λI)†b has uT

nxλ = 0 and A + λI � 0 by assumption. If ‖xλ‖2 > 1, then we have
limλ→∞ ‖(A + λI)−1b‖2 = 0 and continuity again implies the existence of λ > −dn such that
x = −(A + λI)−1b with ‖x‖2 = 1, satisfying all conditions of the theorem. The final case
that ‖xλ‖2 ≤ 1, where λ = −dn, is relatively simple as well: we set

x = xλ + (1 − ‖xλ‖
2
2)

1/2un,

which satisfies all the conditions of the theorem: we have ‖x‖2 = 1 because un ⊥ xλ and
(A + λI)un = 0.

The proof of Theorem 1 also suggests a method for solving the trust region update: we
check the cases for existence of λ∗, and perform a binary search over feasible values of λ until
we have satisfied the conditions of the theorem. Alternatively, there are numerous sophis-
ticated Newton-type root-finding strategies to obtain the optimal value λ⋆ in the theorem;
the book [CGT00] contains procedures and references (see also [NW06]).

6

2.3 Regularized methods

A variant of the trust region method is to regularize the problem instead of directly con-
straining the iterates to lie close to one another. Broadly, in this case, at each iteration
we define some type of model of the function f , centered at the current iterate x(k), and
regularize the model so that it remains accurate near x(k), or provides an upper bound on f
itself. We typically write this model as

fx(y) ≈ f(y),

where fx(x) = f(x) so that x denotes its “centering” point. In this notation, the first-order
model is

fx(y) = f(x) + ∇f(x)T (y − x),

while the second order (quadratic) model is

fx(y) = f(x) + ∇f(x)T (y − x) +
1

2
(y − x)T∇2(y − x).

Then instead of iterating by setting x(k+1) = argminx fx(k)(x), we add a regularization term
r : Rn → R+, where r(0) = 0, and update

x(k+1) = argmin
x

{
fx(k)(x) + r(x− x(k))

}
. (4)

One recent and powerful strategy, strongly related to the trust region methods, is termed
cubic regularization of Newton’s method [Gri81, NP06]. In this case, we assume the problem
is unconstrained and use r(x) = ρ

3
‖x‖32, term, updating

x(k+1) = argmin
x

{
fx(k)(x) +

ρ

3

∥∥x− x(k)
∥∥3
2

}
,

where fx is the quadratic model. This cubic problem is a Lagrangian for the trust region
problem with region T (k) = {x | ‖x− x(k)‖2 ≤ r}, so such an idea should come as relatively
little surprise.

The advantage of regularized formulations (4) is that, with judicious choice of regularizer
r, we can often treat them as majorization-minimization algorithms, that is, algorithms
that sequentially minimize upper bounds on the function f that are tight at the current
iterate x(k). For any such algorithm, we always decrease the objective, so the function
values f(x(k)) either converge or decrease to −∞. For a more precise convergence rate in a
reasonably general case, see Section 5 to follow.

In the case of the cubic-regularized Newton’s method, we can give conditions under which
it is guaranteed to be an upper bound. Indeed, assume that ∇2f(x) is L-Lipschitz continuous,
meaning that |||∇2f(x) −∇2f(y)|||op ≤ L ‖x− y‖2 for x, y ∈ Rn and |||·|||op denotes the typical
ℓ2-operator norm. Then a calculation with Taylor’s theorem [NP06] implies that if fx(y) is
second-order expansion of f at x, then

|f(y) − fx(y)| ≤
L

6
‖x− y‖32 ,

7

so that we may take ρ = L/2 in the cubic problem. The solution of the resulting problem,
that is, to minimize

1

2
xTAx + bTx +

ρ

3
‖x‖32 , (5)

has similar structure to the trust region update (Theorem 1). An entirely parallel argument
shows that x⋆ is a solution to the problem (5) if and only if

A + ρI ‖x⋆‖2 � 0, (A + ρI ‖x⋆‖2)x
⋆ + b = 0,

and the solution is unique if A+ ρI ‖x⋆‖2 ≻ 0. Again, a root finding search based on taking
an eigen-decomposition and finding ‖x⋆‖2 allows one to solve the problem.

2.4 Convex-concave procedure

TODO

2.5 A basic sequential convex programming method

There are a number of issues in actually implementing the general SCP method (2). While
each step is, in principle, easy to solve (as it is a convex problem), numerous issues arise
because of infeasibility, how to decide when to accept a step, and trading between feasibility
of constraints and quality of the objective.

With this in mind, a typical approach is to assign penalties to constraint violations rather
than to directly enforce the constraints, which may be impossible anyway. For a penalty
method, we replace the original problem (1) with an approximation

φ(x) := f0(x) + λ

(
m∑

i=1

[fi(x)]+ +

p∑

j=1

|hj(x)|

)
,

where λ > 0 is a penalty parameter to be chosen. This approximation is known as an exact
penalty approach, because (for large enough λ) it typically does not introduce any spurious
local minima, and is minimized at points where the constraints are exactly satisfied. (One can
say much more about this formulation, and we will revisit it and related ideas later.) Suffice
it to say, the penalization approach above can often allow progress that would otherwise be
impossible, as it allows violation of the constraints and a more careful trading between the
objective f0, constraint violoations on fi, and constraint violations on the hj.

At a given iteration k in which we solve the update (2), we may compare the solution
x̃ and its expected objective value to the actual objective, performing a backtracking line
search. Indeed, let

φ̂(x) := f̂0(x) + λ

(
m∑

i=1

[
f̂i(x)

]
+

+

p∑

j=1

|ĥj(x)|

)
, (6)

8

where f̂ and ĥ are the convex and linear approximations to f and h, respectively. In this
case, the problem (6) is convex in x, and (typically) is efficiently solvable. There are two
natural approaches: one is based on decreasing and increasing the radius of the trust region,
while the other performs a type of backtracking line search on the objectives.

In the former case, where we update the trust region, let us assume the trust region is
T (k) = {x ∈ Rn : ‖x− x(k)‖ ≤ ρ(k)}. Let α ∈ (0, 1

2
) and βsucc > 1 and βfail < 1. Then we set

x̃ to minimize the approximation (6) over x ∈ T (k). We have predicted decrease

δ̂ = φ(x(k)) − φ̂(x̃),

and the actual decrease
δ = φ(x(k)) − φ(x̃).

If δ ≥ αδ̂, meaning that we have sufficient decrease, then we accept the step and set x(k+1) =
x̃, enlarging the trust region by ρ(k+1) = βsuccρ(k). Otherwise, we reject the step, setting
ρ(k+1) = βfailρ(k), and re-solving the problem from x(k). This is similar to the classical
Armijo or backtracking line searchers, where we accept a step when the actual decrease is
more than a fraction α of the predicted amount, increasing the stepsize in that case.

The second and somewhat simpler approach is a basic backtracking line search. In this
case, we either solve problem (2) or (6) to obtain x̃, then set ∆ = x̃ − x(k). Then for some
α ∈ (0, 1

2
) and β > 1, we backtrack beginning from t = 1: until

φ(x(k) + t∆) ≤ φ(x(k)) − αt(φ(x(k)) − φ̂(x̃)),

we update t := t/β. We then accept the step and update x(k+1) = x(k) + t∆. So long as

the approximations f̂ and ĥ are locally accurate enough (e.g. if the functions f and h are
differentiable), this procedure will terminate eventually.

3 Convex modeling approaches

The approaches we have described thus far are often effective. There are somewhat more
sophisticated approaches that allow for even non-differentiable, nonconvex problems. In some
cases, these methods encompass a more natural way to approach the problems, allowing a
type of disciplined nonconvex programming.

3.1 Particle methods

Particle methods take an approach to modeling the general nonconvex problem (1) by a
convex function without assuming essentially anything about the original problem. They
iterate by choosing points z1, . . . , zK ∈ T (k), the kth trust region, and evaluating the func-
tion values yi = f(zi). These points zi may be chosen in many ways: uniformly at random,
using quasi-Monte-Carlo methods, or at the extreme points of T (k). The idea is to then fit
the data (zi, yi) with the “best” convex approximation to the data, using convex approxi-
mation approaches. The advantages of these methods include that they allow for general

9

(a) (b) (c)

Figure 2. The particle method. (a) Four randomly sampled points zi (plus boundaries)
and resulting fitted function. (b) Twelve randomly sampled points zi (plus boundaries) and
resulting fitted function. (c) Twenty four uniformly spaced points zi and resulting fitted
function.

nondifferentiable functions, or functions for which evaluating derivatives is very challenging,
and they give regional models that are accurate in a neighborhood of the current point x(k).
Assuming enough coverage in the evaluated points z1, . . . , zK , they can be accurate across
the entire trust region T (k). On the other hand, they can often have extraordinary sampling
requirements—there exist functions for which the sample size K at each iteration must scale
exponentially with the dimension.

Let us describe two fitting strategies for such problems. A simple idea is to find the
tightest convex lower bound on the sampled function values (zi, yi) = (zi, f(zi)); in effect,
this is (approximately) taking the biconjugate of f over the region T (k). We begin by fitting
f with a piecewise affine function (as f ∗∗ is of course the supremum of all affine functions
underestimating f). Let us call the fitted function h : Rn → R. For each i = 1, . . . , K,
we introduce variables hi ∈ R (to act as function values h(xi)) and gi ∈ Rn (to act as
subgradients in ∂h(xi)). We define

h(x) = max
i

{hi + gTi (x− zi)}.

This function is clearly convex, and we see that the first-order convexity conditions become
hj ≥ hi + gTi (zj − zi) for all pairs (i, j), which are convex constraints in h, g. As we wish our
function to be an (approximate) lower bound on f , we introduce the constraint yi ≥ hi for
all i as well. Then, to obtain our approximate function h, we solve the convex optimization
problem

minimize
h,g

K∑

i=1

(hi − yi)
2

subject to hj ≥ hi + gTj (zj − zi), hi ≤ yi for i, j = 1, . . . , K.

(7)

In Figure 2, we give an example of this method’s performance. In the plots, we show the
results of the function h(x) fit by the optimization problem (7), where the true function (the

10

quartic f(x) = x4 − 2x3 + .3x) is shown as the solid blue line, with the sampled points and
fitted function as the dotted black line. The left two plots ((a) and (b)) show the results of
randomly chosen points, while (c) shows the results of choosing points equi-spaced over the
interval T (k) = [−2, 1].

An alternative, if the functions are smoother, is to fit quadratic functions to the data,
which may have better performance. In this case, we will use h(x) = 1

2
(x − x(k))TP (x −

x(k)) + qT (x− x(k)) + r as the function being fit, and constraining P � 0, the closest (in ℓ2
error) convex quadratic to the observed data is found by solving

minimize
K∑

i=1

(
(zi − x(k))TP (zi − x(k)) + qT (zi − x(k)) + r − yi

)2

subject to P � 0

over the variables P ∈ Sn, q ∈ Rn, and r ∈ R. This will not yield (even in the limit of infinite
samples) a lower bound or upper bound on the function f , even locally, but it can be much
more efficient from a sample requirement perspective than the piecewise affine fitting (7).

3.2 Composite optimization

A general family of nonconvex and nonsmooth functions are the so-called convex composite
functions, which are functions of the form

f(x) = h(c(x)), (8)

where h : Rm → R is convex and c : Rn → Rm is a smooth (differentiable) function. There
are numerous applications of such functions.

The first applications arose out of the exact penalty approach, which we mentioned al-
ready in Section 2.5. In particular, if we consider the potentially nonconvex problem

minimize f(x) subject to c(x) = 0, (9)

where the constraint c(x) = 0 is given by a continuously differentiable function c : Rn → Rm,
m ≤ n, then the exact penalty formulation of problem (9) is

minimize f(x) + λ ‖c(x)‖ ,

where λ ≥ 0 is a penalty parameter and ‖·‖ is some norm on Rm. Under various constraint
qualifications, this penalization leaves intact the set of local minimizers for problem (9).
Indeed, suppose that x0 is a local minimizer of problem (9), so that f(x) ≥ f(x0) for all
x near x0 with c(x) = 0, and that (i) f is Lipschitz in a neighborhood of x0 and (ii) the
Jacobian transpose ∇c(x) = [∇c1(x) · · · ∇cm(x)] ∈ Rn×m has independent columns at x0.
Then in a neighborhood of x0, ∇c(x) has independent columns, and we have for large enough
λ that

f(x) + λ ‖c(x)‖ ≥ f(x0) − Lip(f) ‖x− x0‖ + λ
∥∥c(x0) + ∇c(x0)

T (x− x0) + o(‖x− x0‖)
∥∥

≥ f(x0) + (λγmin(∇c(x0)) − Lip(f)) ‖x− x0‖ + o(‖x− x0‖)

≥ f(x0) = f(x0) + λ ‖c(x0)‖

11

Figure 3. The function f(x) = |x2 − 1|, along with convex approximations to it, local to
the point x, given by fx(y) = |x2 + 2x(y − x)− 1|. This is the composite model of f given
by Eq. (10).

for all x near enough x0, where γmin denotes the minimum singular value of its argument.
The formulation (8) has many other applications. For example, consider a machine

learning or statistical application where we have data in pairs (xi, yi), and we wish to model
yi by some nonlinear but smooth function σ(wTxi), where W ∈ Rm×n is a matrix and
σ : R → R. If we place a convex loss ℓ on the error yi − σ(wTxi), we have optimization
problem

f(w) =
N∑

i=1

ℓ(yi − σ(wTxi)),

which is the composition of a convex function ℓ with a smooth function σ. We will give more
examples in the coming sections.

The methods for problem (8) are elegant and often very effective. As is typical in our
optimization problems, our first step is to model the function f locally by some simpler to
solve or minimize convex model. In this case, because c is smooth, a natural model for f in
a neighborhood of x, which we denote by fx to indicate its locality to x, is

fx(y) := h(c(x) + ∇c(x)T (y − x)), (10)

which is convex in y. See Figure 3. This then gives rise to the prox-linear method, which
iterates

x(k+1) = argmin
x

{
fx(k)(x) +

1

2αk

∥∥x− x(k)
∥∥2
}
, (11)

where αk > 0 is a stepsize, minimizing a regularized model of the function f centered around
the point x(k).

There are a number of ways to choose the stepsize αk. One of the simplest is the following:
if the function h is L-Lipschitz and ∇c is β-Lipschitz, then a Taylor approximation shows

12

that ∥∥c(y) −
(
c(x) + ∇c(x)T (y − x)

)∥∥ ≤
β

2
‖y − x‖2 ,

and thus

fx(y) = h(c(x) + ∇c(x)T (y − x)) ≤ h(c(y)) +
Lβ

2
‖y − x‖2 ,

and so any αk ≤ 1
Lβ

guarantees decrease in the objective. A second common approach is

to adapt the backtracking line search strategy of Section 2.5. In this case, if x+
α minimizes

fx(y) + 1
2α

‖y − x‖2 over y, we backtrack until the predicted decrease in objective is similar
to the actual decrease in objective. Beginning from t = 1, until

f(x+
tα) ≤ f(x) − κt

[
f(x) − fx(x+

tα)
]

for some κ ∈ (0, 1), we divide t := t/β for some β > 1. That is, we repeatedly minimize
problem (11) at decreasing stepsizes until we make progress sufficiently close to the predicted
progress by the approximation fx. Alternatively, we may employ the simpler backtracking
search at the conclusion of Section 2.5.

4 Examples

4.1 Nonlinear optimal control

TO WRITE

4.2 Phase retrieval

TO WRITE

5 Convergence of majorization-minimization

In this section, we give a brief argument typical of the type of convergence guarantees
one can show using majorization-minimization schemes. We give a simple form of the ar-
gument, noting that there are substantially more possibilities and advanced convergence
results [Bur85, BF95, DL18]. In the generality we consider, the best convergence one can
hope for is convergence to a stationary point, which is what we show. To set notation, we
look at the problem

minimize f(x)

where f is potentially non-convex, and it may include terms such as IC(x) where C is convex,
the +∞-valued indicator of x ∈ C.

Before continuing, we give a few preliminaries, which include the class of functions we
consider. We say that a function f : Rn → R is λ-semi-convex if for all x0 ∈ Rn, the
function

f(x) +
λ

2
‖x− x0‖

2
2 (12)

13

is convex. You should convince yourself that the choice of x0 does not matter: if f is
semi-convex for one x0, it is semi-convex for all x0 ∈ Rn. (There is no standard name for
this class of functions; it is variously called weak convexity, lower C2, and sometimes has
names such as prox-regularity attached to it. See, e.g. [BDLM09, RW98, DL18].) With this
class of functions, we can define an extended notion of subdifferential (called the Fréchet
subdifferential), and while there are vastly more sophisticated ways to derive such extended
subdifferentials, we follow the simplest attack and simply define

∂f(x) := ∂y

{
f(y) +

λ

2
‖y − x‖22

}∣∣∣∣
y=x

,

that is, ∂f(x) is the subdifferential of the convex function (12) when we take x0 = x evaluated
at x. A calculation shows that with this definition, we also have

∂f(x) =
{
g ∈ Rn | f(y) ≥ f(x) + gT (y − x) + O(‖y − x‖2) as y → x

}
.

One class of functions that satisfies this are the convex composite functions of Section 3.2.
Indeed, let f(x) = h(c(x)), where h : Rm → R is convex and L-Lipschitz continuous and
c : Rn → Rm has β-Lipschitz continuous gradient, that is,

|||∇c(x) −∇c(y)|||op ≤ β ‖x− y‖2 ,

where |||·|||op denotes the ℓ2-operator norm (maximum singular value). Then we claim the
following lemma.

Lemma 5.1. Let f = h ◦ c as above. Then f is Lβ-semi-convex.

Proof As h is a closed convex function, it is equal to its own biconjugate, that is, for
w ∈ Rm we have

h(w) = sup
v

{
vTw − h∗(v)

}
= sup

‖v‖2≤L

{
vTw − h∗(v)

}
,

where we have used that h is L-Lipschitz. Now, note that

x 7→ wT c(x) has ∇xw
T c(x) = ∇c(x)w,

which satisfies ‖∇c(x)w −∇c(y)w‖2 ≤ Lβ ‖x− y‖2, so that the second-order conditions for
convexity imply

x 7→ wT c(x) +
Lβ

2
‖x− x0‖

2
2

is convex for any x0 ∈ Rn. We then have

h(c(x)) +
Lβ

2
‖x− x0‖

2
2 = sup

‖v‖2≤L

{
vT c(x) +

Lβ

2
‖x− x0‖

2
2 − h∗(v)

}
,

which is the supremum of convex functions in x and hence convex.

14

In any case, let us now consider a majorization minimization scheme, which at iteration k
minimizes a convex function, centered at x(k), denoted fx(k) , with regularization. We assume
that f is λ-semi-convex, and that there exists γ ∈ R+ such that for all x ∈ Rn, we have the
approximation guarantee

|fx(y) − f(y)| ≤
γ

2
‖y − x‖22 . (13)

(This may be satisfied for some γ′ < γ, but we only consider γ.) The generic majorization-
minimization scheme then iterates

x(k+1) = argmin
x

{
fx(k)(x) +

γ

2

∥∥x− x(k)
∥∥2
2

}
. (14)

5.1 Nearly stationary points

The iteration (14), coupled with the semi-convexity condition (12), yields several interesting
behaviors. To understand convergence to stationary points, we actually begin with the
semi-convexity condition (12). Let us define the proximal point

xpp := proxf/(2λ)(x) = argmin
y

{
f(y) +

λ

2
‖y − x‖22 +

λ

2
‖y − x‖22

}
.

Without any loss of generality, we assume that λ ≥ γ, as increasing λ simply makes the
problem more strongly convex. Recall that f(y) + (λ/2) ‖y − x‖22 is convex, so the objective
above is λ-strongly convex.1 Using the standard optimality conditions for minimization of a
convex function, we have for some

g ∈ ∂{f(xpp) +
λ

2
‖xpp − x‖22} = ∂f(xpp) + λ(xpp − x),

where the second ∂ is the Fréchet subdifferential, that

g + λ(xpp − x) = 0. (15)

Thus we have the optimality (or growth) guarantee

f(y) +
λ

2
‖y − x‖22 ≥ f(xpp) +

λ

2
‖xpp − x‖22 + gT (y − xpp)

= f(xpp) +
λ

2
‖xpp − x‖22 − λ(x− xpp)T (y − xpp)

= f(xpp) + λ ‖x− xpp‖22 +
λ

2
‖y − xpp‖22 −

λ

2
‖y − x‖22 ,

or

f(y) + λ ‖y − x‖22 ≥ f(xpp) + λ ‖xpp − x‖22 +
λ

2
‖y − xpp‖22 (16)

for all y ∈ Rn. Summarizing, by using equality (15), we see that

1A convex function h is λ-strongly convex if h(y) ≥ h(x)+gT (y−x)+ λ

2
‖y − x‖

2

2
for all x, y and g ∈ ∂f(x).

15

Lemma 5.2. Suppose that x satisfies the proximal-point closeness condition ‖xpp − x‖2 ≤ ǫ.
Then

(i) Near stationarity: The proximal point xpp guarantees there exists g ∈ ∂f(xpp) such
that ‖g‖2 ≤ λǫ, or dist(0, ∂f(xpp)) ≤ λǫ

(ii) Improvement: The proximal point xpp satisfies f(xpp) ≤ f(x).

That is, if the proximal point update is small, then it is nearly stationary. This suggests
that if our model-based update (14) is small, then the resulting point should somehow be
nearly stationary as well. This is indeed our strategy.

Let us return to the iteration (14). We show that if the general update

x+ = argmin
y

{
fx(y) +

γ

2
‖y − x‖22

}
.

leaves x+ near x, then the points x+ and xpp from the proximal point update are also
close, yielding a type of near-stationarity for x+. Following an identical derivation to obtain
inequality (14), we have

fx(x+) +
γ

2

∥∥x+ − x
∥∥2
2

+
γ

2

∥∥y − x+
∥∥2
2
≤ fx(y) +

γ

2
‖y − x‖22 (17)

Now, substitute y = xpp in the preceding inequality to obtain

fx(x+) +
γ

2

∥∥x+ − x
∥∥2
2

+
γ

2

∥∥xpp − x+
∥∥2
2
≤ fx(xpp) +

γ

2
‖xpp − x‖22 .

Using the approximation condition (13), we immediately obtain that

f(x+) +
γ

2

∥∥xpp − x+
∥∥2
2
≤ fx(x+) +

γ

2

∥∥x+ − x
∥∥2
2

+
γ

2

∥∥xpp − x+
∥∥2
2

≤ f(xpp) + γ ‖xpp − x‖22

= f(xpp) + λ ‖xpp − x‖22 + (γ − λ) ‖xpp − x‖22

≤ f(x+) + λ
∥∥x+ − x

∥∥2
2

+ (γ − λ) ‖xpp − x‖22 −
λ

2

∥∥x+ − xpp
∥∥2
2
,

where in the final inequality we used that xpp minimizes the λ-strongly convex function
f(y) + λ ‖y − x‖22 over y. Rearranging, and using our assumption that λ ≥ γ, we have

γ + λ

2

∥∥x+ − xpp
∥∥2
2
≤ λ

∥∥x+ − x
∥∥2
2
.

Summarizing, we have the following three results, which show that if ‖x+ − x‖ is small,
then there exists a point x̂ near x+ that is well-behaved. (Take x̂ = xpp and use Lemma 5.2.)

Lemma 5.3. Let x+ = argminy{fx(y) + γ
2
‖y − x‖22}. Then there exists x̂ satisfying the

following three conditions:

16

(i) Point proximity: we have

‖x̂− x+‖2 ≤

√
2λ

γ + λ

∥∥x+ − x
∥∥
2

(ii) Value proximity: we have

f(x̂) ≤ f(x+) + λ
∥∥x+ − x

∥∥2
2

(iii) Near stationarity:

dist(0, ∂f(x̂)) ≤ λ

√
2λ

γ + λ

∥∥x+ − x
∥∥
2
.

We can restate the conditions above in a slightly different way: whenever the iterates
x(k) and x(k+1) are suitably close, then x(k+1) is near a point which is nearly stationary. This
justifies a common heuristic: we simply stop when

∥∥x(k+1) − x(k)
∥∥ is small. In general, we

use a better normalized version of this quantity, known as the gradient mapping, which is
defined by

Gγ(x) := γ(x− x+), (18)

which we see guarantees that the iterates satisfy x(k+1) = x(k) − αGγ(x(k)) for the stepsize
α = 1/γ, justifying the term gradient mapping. We then stop the iterations when

∥∥G1/α(x(k))
∥∥
2
≤ ǫ.

5.2 Convergence of majorization-minimization

With our guarantees that small gradient mapping (18) guarantees nearly stationary points,
we finally return to prove that the majorization-minimization scheme actually yields points
that have small gradient mapping. We assume that there exists x⋆ satisfying f(x⋆) =
infx f(x), though this is stronger than necessary but simplifies notation. Consider the up-
date scheme (14). First, we see that the iterates yield non-increasing function values, as we
always have

f(x(k+1)) ≤ fx(k)(x(k+1)) +
γ

2

∥∥x(k+1) − x(k)
∥∥2
2
≤ fx(k)(x(k)) = f(x(k))

by the approximation condition (13). Second, because fx(y) is convex in y by assumption,
we can make a stronger progress guarantee. Indeed, the objective (14) is γ-strongly convex
in x, so as in the previous section’s Eq. (17), we have the stronger progress guarantee that

f(x(k+1)) ≤ fx(k)(x(k+1)) +
γ

2

∥∥x(k+1) − x(k)
∥∥2
2

≤ fx(k)(x(k)) −
γ

2

∥∥x(k+1) − x(k)
∥∥2
2

= f(x(k)) −
γ

2

∥∥x(k+1) − x(k)
∥∥2
2
.

17

Rearranging and summing, we have

k∑

i=1

γ

2

∥∥x(i+1) − x(i)
∥∥2
2
≤

k∑

i=1

[
f(x(i)) − f(x(i+1))

]
= f(x(1)) − f(x(k+1)) ≤ f(x(1)) − f(x⋆),

where the final inequality uses that f(x(k)) is non-increasing and that f(x⋆) ≤ f(x(k)) for all
k. Using the definition (18) of the gradient mapping, we see that

k∑

i=1

∥∥Gγ(x(i))
∥∥2
2
≤ 2γ

[
f(x(1)) − f(x⋆)

]
,

and

min
i≤k

∥∥Gγ(x(i))
∥∥2
2
≤

2γ[f(x(1)) − f(x⋆)]

k
.

Additional reading and notes

There are numerous references on this material, most of which is classical. The books
of Conn, Gould, and Toint [CGT00] and Nocedal and Wright [NW06] contain numer-
ous results on trust region methods and local methods, such as Newton’s method ap-
plied on non-convex problems. Bertsekas’s book [Ber99] contains a wealth of material
on general nonlinear optimization problems. The cubic-regularized Newton method was
discovered by Griewank [Gri81] in an unpublished technical report and rediscovered, and
used for finding stationary points of smooth nonconvex functions, in [NP06]. The com-
posite optimization approach has a long history in optimization, dating back at least to
Fletcher’s work on exact-penalty formulations for generic nonlinear programming prob-
lems [Fle82, FW80, Fle87]. There has been substantial development in the intervening
years; a few references include [Bur85, BF95, DL18].

References

[BDLM09] Jérôme Bolte, Aris Daniilidis, Olivier Ley, and Laurent Mazet. Characterizations
of Lojasiewicz inequalities: subgradient flows, talweg, convexity. Transactions of
the American Mathematical Society, 362(6):3319–3363, 2009.

[Ber99] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[BF95] James Burke and Michael Ferris. A Gauss-Newton method for convex composite
optimization. Mathematical Programming, 71:179–194, 1995.

[Bur85] James Burke. Descent methods for composite nondifferentiable optimization
problems. Mathematical Programming, 33:260–279, 1985.

18

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[CGT00] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust Region
Methods. MPS-SIAM Series on Optimization. SIAM, 2000.

[DL18] Dmitriy Drusvyatskiy and Adrian Lewis. Error bounds, quadratic growth, and
linear convergence of proximal methods. Mathematics of Operations Research,
To appear, 2018.

[Fle82] Roger Fletcher. A model algorithm for composite nondifferentiable optimization
problems. Mathematical Programming Study, 17:67–76, 1982.

[Fle87] R. Fletcher. Practical Methods of Optimization. John Wiley, second edition,
1987.

[FW80] Roger Fletcher and G. Alistair Watson. First and second order conditions for
a class of nondifferentiable optimization problems. Mathematical Programming,
18:291–307, 1980.

[Gri81] Andreas Griewank. The modification of Newtons method for unconstrained op-
timization by bounding cubic terms. Technical report, Technical report NA/12,
1981.

[NP06] Yurii Nesterov and Boris Polyak. Cubic regularization of Newton method and its
global performance. Mathematical Programming, Series A, 108:177–205, 2006.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.

[RW98] R. T. Rockafellar and R. J. B. Wets. Variational Analysis. Springer, New York,
1998.

19

	Methods for nonconvex optimization problems
	Sequential convex programming (SCP)

	Trust region methods
	A numerical example
	The classical trust region method
	Regularized methods
	Convex-concave procedure
	A basic sequential convex programming method

	Convex modeling approaches
	Particle methods
	Composite optimization

	Examples
	Nonlinear optimal control
	Phase retrieval

	Convergence of majorization-minimization
	Nearly stationary points
	Convergence of majorization-minimization

