Semidefinite Relaxations and Applications

- Semidefinite relaxations
- Lagrangian relaxations for QCQPs
- Randomization
- Bounds on suboptimality
- Applications

Nonconvex problems

ee364 (more or less correct) view:

- convex is easy
- nonconvex is hard(er)
we will use convex optimization to
- find bounds on optimal value by relaxation
- get "good enough" feasible points by randomization

Basic problem: QCQPs

$$
\begin{aligned}
& \operatorname{minimize} x^{T} A_{0} x+b_{0}^{T} x+c_{0} \\
& \text { subject to } x^{T} A_{i} x+b_{i}^{T} x+c_{i} \leq 0, \quad i=1, \ldots, m
\end{aligned}
$$

- if all A_{i} are PSD, convex problem, use ee364
- here, we suppose at least one A_{i} is not PSD

Example: Boolean Least Squares

Boolean least-squares problem is to

$$
\operatorname{minimize}\|A x-b\|_{2}^{2} \text { subject to } \quad x_{i}^{2}=1, \quad i=1, \ldots, n
$$

- basic problem in digital communications (noisy channel)
- could check all 2^{n} possible values of $x \ldots$
- an NP-hard problem, and very hard in practice
- many heuristics for approximate solution

Example: Partitioning Problem

two-way partitioning problem (§5.1.5 in [BV04]):

$$
\begin{aligned}
& \operatorname{minimize} x^{T} W x \\
& \text { subject to } x_{i}^{2}=1, \quad i=1, \ldots, n
\end{aligned}
$$

where $W=W^{T}, W_{i i}=0$

- feasible $x \in\{-1,1\}$ corresponds to partitioning
- coefficients $W_{i j}$ interpreted as the cost of having the elements i and j in the same partition.
- the objective is to find the partition with least total cost
- classic particular instance: MAXCUT $\left(W_{i j} \geq 0\right)$

Example: cardinality problems

minimize $\operatorname{card}(x)$
subject to $x \in \mathcal{C}$

introduce $z_{i} \in\{0,1\}$, i.e. $z_{i}\left(1-z_{i}\right)=0$,

$$
\begin{aligned}
& \operatorname{minimize} 1^{T} z \\
& \text { subject to } z_{i}-z_{i}^{2}=0, x_{i}\left(1-z_{i}\right)=0 \quad i=1, \ldots, n \\
& \quad x \in \mathcal{C}
\end{aligned}
$$

Semidefinite relaxation

original QCQP

$$
\begin{aligned}
& \operatorname{minimize} x^{T} A_{0} x+b_{0}^{T} x+c_{0} \\
& \text { subject to } x^{T} A_{i} x+b_{i}^{T} x+c_{i} \leq 0, \quad i=1, \ldots, m
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
\text { minimize } & \operatorname{Tr}\left(A_{0} X\right)+b_{0}^{T} x+c_{0} \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)+b_{i}^{T} x+c_{i} \leq 0, \quad i=1, \ldots, m \\
& X=x x^{T}
\end{aligned}
$$

change $X=x x^{T}$ into $X \succeq x x^{T}$

Lagrangian relaxation

original QCQP

$$
\begin{aligned}
& \operatorname{minimize} x^{T} A_{0} x+b_{0}^{T} x+c_{0} \\
& \text { subject to } x^{T} A_{i} x+b_{i}^{T} x+c_{i} \leq 0, \quad i=1, \ldots, m
\end{aligned}
$$

forming Lagrangian

$$
L(x, \lambda)=x^{T}\left(A_{0}+\sum_{i=1}^{m} \lambda_{i} A_{i}\right) x+\left(b_{0}+\sum_{i=1}^{m} \lambda_{i} b_{i}\right)^{T} x+c_{0}+\lambda^{T} c
$$

recall that

$$
\inf _{x}\left\{x^{T} P x+q^{T} x+r\right\}= \begin{cases}r-\frac{1}{4} q^{T} P^{\dagger} q & \text { if } P \succeq 0, \quad q \in \mathcal{R}(P) \\ -\infty & \text { otherwise }\end{cases}
$$

Lagrangian relaxation: dual

$$
L(x, \lambda)=x^{T}\left(A_{0}+\sum_{i=1}^{m} \lambda_{i} A_{i}\right) x+\left(b_{0}+\sum_{i=1}^{m} \lambda_{i} b_{i}\right)^{T} x+c_{0}+\lambda^{T} c
$$

has (for $B=\left[\begin{array}{lll}b_{1} & \cdots & b_{m}\end{array}\right]^{T} \in \mathbf{R}^{m \times n}$)

$$
\begin{aligned}
g(\lambda) & =\inf _{x} L(x, \lambda) \\
& =-\frac{1}{4}\left(b_{0}+B^{T} \lambda\right)^{T}\left(A_{0}+\sum_{i} \lambda_{i} A_{i}\right)^{\dagger}\left(b_{0}+B^{T} \lambda\right)+\lambda^{T} c+c_{0}
\end{aligned}
$$

Lagrangian relaxation: dual

Taking Schur complements gives dual problem

$$
\begin{aligned}
\text { maximize } & \frac{1}{4} \gamma+c^{T} \lambda+c_{0} \\
\text { subject to } & {\left[\begin{array}{cc}
\left(A_{0}+\sum_{i=1}^{m} \lambda_{i} A_{i}\right) & \left(b_{0}+B^{T} \lambda\right) \\
\left(b_{0}+B^{T} \lambda\right)^{T} & -\gamma
\end{array}\right] \succeq 0, } \\
& \lambda \succeq 0
\end{aligned}
$$

semidefinite program in variable $\lambda \in \mathbf{R}_{+}^{m}$ and can be solved "efficiently"

Lagrangian relaxation: Bidual

Taking dual again gives SDP

$$
\begin{aligned}
\operatorname{minimize} & \operatorname{Tr}\left(A_{0} X\right)+b_{0}^{T} x+c_{0} \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)+b_{i}^{T} x+c_{i} \leq 0, \quad i=1, \ldots, m \\
& {\left[\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right] \succeq 0 }
\end{aligned}
$$

in variables $X \in \mathbf{S}^{n}, x \in \mathbf{R}^{n}$

- have recovered original SDP relaxation "automatically"
- convexification of original problem!

Example: Partitioning

$$
\begin{aligned}
& \operatorname{minimize} x^{T} W x \\
& \text { subject to } x_{i}^{2}=1, \quad i=1, \ldots, n
\end{aligned}
$$

no need to maintain variable x, gives relaxation (via $X=x x^{T}$)

$$
\begin{aligned}
& \text { minimize } \operatorname{Tr}(W X) \\
& \text { subject to } X \succeq 0, \operatorname{diag}(X)=\mathbf{1}
\end{aligned}
$$

Feasible points?

- have lower bounds on optimal value of problem
- big question: how do we compute good feasible points?
- can we measure if our lower bound is suboptimal?

Simplest idea: randomization

original problem

$$
\begin{aligned}
& \operatorname{minimize} x^{T} A_{0} x+b_{0}^{T} x+c_{0} \\
& \text { subject to } x^{T} A_{i} x+b_{i}^{T} x+c_{i} \leq 0, \quad i=1, \ldots, m
\end{aligned}
$$

and relaxation

$$
\begin{aligned}
\text { minimize } & \operatorname{Tr}\left(A_{0} X\right)+b_{0}^{T} x+c_{0} \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)+b_{i}^{T} x+c_{i} \leq 0, \quad i=1, \ldots, m \\
& X-x x^{T} \succeq 0
\end{aligned}
$$

- if X, x solve relaxed problem, then $X-x x^{T} \succeq 0$ can be a covariance matrix.

Gaussian randomization

- pick z as a Gaussian variable with $z \sim \mathcal{N}\left(x, X-x x^{T}\right)$
- z will solve the QCQP "on average" over this distribution in other words:

$$
\begin{aligned}
& \text { minimize } \mathbf{E}\left[z^{T} A_{0} z+b_{0}^{T} z+r_{0}\right] \\
& \text { subject to } \mathbf{E}\left[z^{T} A_{i} z+b_{i}^{T} z+c_{i}\right] \leq 0, \quad i=1, \ldots, m
\end{aligned}
$$

a good feasible point obtained by sampling enough z (often more sophisticated strategies)

Gaussian randomization

- possible to get sharper guarantees and exactly feasible points, e.g. for MAXCUT or other boolean problems
- constraint

$$
x_{i}^{2}=1
$$

so just take $x_{i}=\boldsymbol{\operatorname { s i g n }}\left(z_{i}\right)$

- for $\hat{x}=\operatorname{sign}\left(z_{i}\right), z_{i} \sim \mathcal{N}(0, X)$, have

$$
\mathbf{E}\left[\hat{x}_{i} \hat{x}_{j}\right]=\frac{2}{\pi} \arcsin \left(X_{i j}\right)
$$

Approximation guarantees

MAXCUT relaxation

```
maximize }\operatorname{Tr}(WX
subject to }\operatorname{diag}(X)=\mathbf{1},X\succeq
```

gives

$$
\mathbf{E}\left[\hat{x}^{T} W \hat{x}\right]=\frac{2}{\pi} \mathbf{E}[W \arcsin (X)]
$$

- draw a few samples \hat{x}, get at least that good with high probability
- optimal value of MAXCUT is between $\frac{2}{\pi} \operatorname{Tr}(W \arcsin (X))$ and $\operatorname{Tr}(W X)$.

Better rounding (Goemans \& Williamson)

suppose $W_{i j} \geq 0$, maximize

$$
\sum_{i j} W_{i j}\left(1-X_{i j}\right) \text { subject to } \operatorname{diag}(X)=1, X \succeq 0
$$

- sample coordinates \hat{x}_{i} at random, get $\operatorname{Tr}(W)-\mathbf{E}\left[\hat{x}^{T} W \hat{x}\right]=\operatorname{Tr}(W)$, at least 50% optimal
- sample directions:

$$
X_{i j}=v_{i}^{T} v_{j} \text { with }\left\|v_{i}\right\|=1
$$

i.e. $X=V^{T} V$ by Cholesky

- draw Z uniformly at random on unit sphere, set

$$
\hat{x}_{i}=\operatorname{sign}\left(Z^{T} v_{i}\right)
$$

Better rounding (Goemans \& Williamson)

expected value of cut is

$$
\begin{aligned}
\mathbf{E}\left[W_{i j}\left(1-\hat{x}_{i} \hat{x}_{j}\right)\right] & =2 W_{i j} \operatorname{Pr}\left(Z \text { separates } v_{i}, v_{j}\right) \\
& =2 W_{i j} \operatorname{Pr}\left(\operatorname{sign}\left(v_{i}^{T} Z\right) \neq \operatorname{sign}\left(v_{j}^{T} Z\right)\right) \\
& =2 W_{i j} \frac{2 \theta\left(v_{i}, v_{j}\right)}{2 \pi} \\
& =\frac{2}{\pi} W_{i j} \cos ^{-1}\left(v_{i}^{T} v_{j}\right)
\end{aligned}
$$

so

$$
\sum_{i j} \mathbf{E}\left[W_{i j}\left(1-\hat{x}_{i} \hat{x}_{j}\right)\right]=\frac{2}{\pi} \sum_{i j} W_{i j} \cos ^{-1}\left(X_{i j}\right)
$$

- Fact: $\cos ^{-1}(t) \geq \frac{\pi}{2} \alpha(1-t), \alpha \approx .87856$

Better rounding: final bound

- expected weight from random cut generated by optimal X is at least

$$
\frac{2}{\pi} \sum_{i j} W_{i j} \cos ^{-1}\left(X_{i j}\right) \geq \alpha \sum_{i j} W_{i j}\left(1-X_{i j}\right)=\alpha \mathrm{SDP}^{*}
$$

- alternatives: if $W \succeq 0$, then (Nesterov 98)

$$
\operatorname{Tr}(W \arcsin (X)) \geq \operatorname{Tr}(W X)
$$

so (using earlier bound)

$$
\mathrm{SDP}^{*} \geq \mathrm{OPT} \geq \frac{2}{\pi} \mathrm{SDP}^{*}
$$

Example: boolean least squares

- (randomly chosen) parameters $A \in \mathbf{R}^{150 \times 100}, b \in \mathbf{R}^{150}$
- $x \in \mathbf{R}^{100}$, so feasible set has $2^{100} \approx 10^{30}$ points

LS approximate solution: minimize $\|A x-b\|$ s.t. $\|x\|_{2}^{2} \leq n$, then round yields objective 8.7% over SDP relaxation bound
randomized method: (using SDP optimal distribution)

- best of 20 samples: 3.1% over SDP bound
- best of 1000 samples: 2.6% over SDP bound

Example: partitioning problem

$$
\begin{aligned}
& \operatorname{minimize} x^{T} W x \\
& \text { subject to } x_{i}^{2}=1, \quad i=1, \ldots, n
\end{aligned}
$$

with SDP relaxation

$$
\begin{aligned}
& \operatorname{minimize} \operatorname{Tr}(W X) \\
& \text { subject to } \operatorname{diag}(X)=1, X \succeq 0
\end{aligned}
$$

and solution $X^{\text {opt }}$

- generate samples $x^{(i)} \sim \mathcal{N}\left(0, X^{\mathrm{opt}}\right), \hat{x}^{(i)}=\boldsymbol{\operatorname { s i g n }}\left(x^{(i)}\right)$
- take one with lowest cost (SDP opt is -1641)

Histogram of partitions

heuristic on 1000 samples: minimum value attained is -1328

Objective progress in partitioning

know optimal cost is between -1641 and -1328

