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Nonconvex problems

ee364 (more or less correct) view:

• convex is easy

• nonconvex is hard(er)

we will use convex optimization to

• find bounds on optimal value by relaxation

• get “good enough” feasible points by randomization
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Basic problem: QCQPs

minimize xTA0x+ bT0 x+ c0

subject to xTAix+ bTi x+ ci ≤ 0, i = 1, . . . ,m.

• if all Ai are PSD, convex problem, use ee364

• here, we suppose at least one Ai is not PSD
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Example: Boolean Least Squares

Boolean least-squares problem is to

minimize ‖Ax− b‖22 subject to x2
i = 1, i = 1, . . . , n

• basic problem in digital communications (noisy channel)

• could check all 2n possible values of x . . .

• an NP-hard problem, and very hard in practice

• many heuristics for approximate solution
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Example: Partitioning Problem
two-way partitioning problem (§5.1.5 in [BV04]):

minimize xTWx

subject to x2
i = 1, i = 1, . . . , n

where W = WT , Wii = 0

• feasible x ∈ {−1, 1} corresponds to partitioning

• coefficients Wij interpreted as the cost of having the elements i and j

in the same partition.

• the objective is to find the partition with least total cost

• classic particular instance: MAXCUT (Wij ≥ 0)
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Example: cardinality problems

minimize card(x)

subject to x ∈ C

introduce zi ∈ {0, 1}, i.e. zi(1− zi) = 0,

minimize 1Tz

subject to zi − z2i = 0, xi(1− zi) = 0 i = 1, . . . , n

x ∈ C
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Semidefinite relaxation

original QCQP

minimize xTA0x+ bT0 x+ c0

subject to xTAix+ bTi x+ ci ≤ 0, i = 1, . . . ,m.

is equivalent to

minimize Tr(A0X) + bT0 x+ c0

subject to Tr(AiX) + bTi x+ ci ≤ 0, i = 1, . . . ,m

X = xxT

change X = xxT into X � xxT

EE364b, Stanford University 6



Lagrangian relaxation

original QCQP

minimize xTA0x+ bT0 x+ c0

subject to xTAix+ bTi x+ ci ≤ 0, i = 1, . . . ,m.

forming Lagrangian

L(x, λ) = xT
(

A0 +

m
∑

i=1

λiAi

)

x+
(

b0 +

m
∑

i=1

λibi

)T

x+ c0 + λT c

recall that

inf
x
{xTPx+ qTx+ r} =

{

r − 1
4q

TP †q if P � 0, q ∈ R(P )

−∞ otherwise
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Lagrangian relaxation: dual

L(x, λ) = xT
(

A0 +

m
∑

i=1

λiAi

)

x+
(

b0 +

m
∑

i=1

λibi

)T

x+ c0 + λT c

has (for B = [b1 · · · bm]T ∈ Rm×n)

g(λ) = inf
x

L(x, λ)

= −
1

4
(b0 +BTλ)T

(

A0 +
∑

i

λiAi

)†

(b0 +BTλ) + λT c+ c0
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Lagrangian relaxation: dual

Taking Schur complements gives dual problem

maximize
1

4
γ + cTλ+ c0

subject to

[

(A0 +
∑m

i=1 λiAi) (b0 +BTλ)
(b0 +BTλ)T −γ

]

� 0,

λ � 0

semidefinite program in variable λ ∈ Rm
+ and can be solved “efficiently”
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Lagrangian relaxation: Bidual

Taking dual again gives SDP

minimize Tr(A0X) + bT0 x+ c0

subject to Tr(AiX) + bTi x+ ci ≤ 0, i = 1, . . . ,m
[

1 xT

x X

]

� 0

in variables X ∈ Sn, x ∈ Rn

• have recovered original SDP relaxation “automatically”

• convexification of original problem!
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Example: Partitioning

minimize xTWx

subject to x2
i = 1, i = 1, . . . , n

no need to maintain variable x, gives relaxation (via X = xxT )

minimize Tr(WX)

subject to X � 0, diag(X) = 1

EE364b, Stanford University 11



Feasible points?

• have lower bounds on optimal value of problem

• big question: how do we compute good feasible points?

• can we measure if our lower bound is suboptimal?
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Simplest idea: randomization

original problem

minimize xTA0x+ bT0 x+ c0

subject to xTAix+ bTi x+ ci ≤ 0, i = 1, . . . ,m.

and relaxation

minimize Tr(A0X) + bT0 x+ c0

subject to Tr(AiX) + bTi x+ ci ≤ 0, i = 1, . . . ,m

X − xxT � 0

• if X,x solve relaxed problem, then X − xxT � 0 can be a covariance
matrix.
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Gaussian randomization

• pick z as a Gaussian variable with z ∼ N (x,X − xxT )

• z will solve the QCQP “on average” over this distribution

in other words:

minimize E[zTA0z + bT0 z + r0]

subject to E[zTAiz + bTi z + ci] ≤ 0, i = 1, . . . ,m

a good feasible point obtained by sampling enough z (often more
sophisticated strategies)
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Gaussian randomization

• possible to get sharper guarantees and exactly feasible points, e.g. for
MAXCUT or other boolean problems

• constraint
x2
i = 1

so just take xi = sign(zi)

• for x̂ = sign(zi), zi ∼ N (0, X), have

E[x̂ix̂j] =
2

π
arcsin(Xij)
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Approximation guarantees

MAXCUT relaxation

maximize Tr(WX)

subject to diag(X) = 1, X � 0

gives

E[x̂TWx̂] =
2

π
E[W arcsin(X)]

• draw a few samples x̂, get at least that good with high probability

• optimal value of MAXCUT is between 2
π Tr(W arcsin(X)) and

Tr(WX).
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Better rounding (Goemans & Williamson)
suppose Wij ≥ 0, maximize

∑

ij

Wij(1−Xij) subject to diag(X) = 1, X � 0

• sample coordinates x̂i at random, get Tr(W )−E[x̂TWx̂] = Tr(W ), at
least 50% optimal

• sample directions:

Xij = vTi vj with ‖vi‖ = 1

i.e. X = V TV by Cholesky

• draw Z uniformly at random on unit sphere, set

x̂i = sign(ZTvi)
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Better rounding (Goemans & Williamson)

expected value of cut is

E[Wij(1− x̂ix̂j)] = 2Wij Pr(Z separates vi, vj)

= 2Wij Pr(sign(v
T
i Z) 6= sign(vTj Z))

= 2Wij
2θ(vi, vj)

2π

=
2

π
Wij cos

−1(vTi vj)

so
∑

ij

E[Wij(1− x̂ix̂j)] =
2

π

∑

ij

Wij cos
−1(Xij)

• Fact: cos−1(t) ≥ π
2α(1− t), α ≈ .87856

EE364b, Stanford University 18



Better rounding: final bound

• expected weight from random cut generated by optimal X is at least

2

π

∑

ij

Wij cos
−1(Xij) ≥ α

∑

ij

Wij(1−Xij) = αSDP∗.

• alternatives: if W � 0, then (Nesterov 98)

Tr(W arcsin(X)) ≥ Tr(WX)

so (using earlier bound)

SDP∗ ≥ OPT ≥
2

π
SDP∗
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Example: boolean least squares

• (randomly chosen) parameters A ∈ R150×100, b ∈ R150

• x ∈ R100, so feasible set has 2100 ≈ 1030 points

LS approximate solution: minimize ‖Ax− b‖ s.t. ‖x‖22 ≤ n, then round
yields objective 8.7% over SDP relaxation bound

randomized method: (using SDP optimal distribution)

• best of 20 samples: 3.1% over SDP bound

• best of 1000 samples: 2.6% over SDP bound
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Example: partitioning problem

minimize xTWx

subject to x2
i = 1, i = 1, . . . , n

with SDP relaxation

minimize Tr(WX)

subject to diag(X) = 1, X � 0

and solution Xopt

• generate samples x(i) ∼ N (0, Xopt), x̂(i) = sign(x(i))

• take one with lowest cost (SDPopt is −1641)
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Histogram of partitions
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heuristic on 1000 samples: minimum value attained is −1328
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Objective progress in partitioning
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know optimal cost is between −1641 and −1328
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