# Semidefinite Relaxations and Applications

- Semidefinite relaxations
- Lagrangian relaxations for QCQPs
- Randomization
- Bounds on suboptimality
- Applications

# **Nonconvex problems**

ee364 (more or less correct) view:

- **convex** is easy
- **nonconvex** is hard(er)

we will use convex optimization to

- find bounds on optimal value by relaxation
- get "good enough" feasible points by randomization

# **Basic problem: QCQPs**

minimize  $x^T A_0 x + b_0^T x + c_0$ subject to  $x^T A_i x + b_i^T x + c_i \leq 0, \quad i = 1, \dots, m.$ 

- if all  $A_i$  are PSD, convex problem, use ee364
- here, we suppose at least one  $A_i$  is not PSD

#### **Example: Boolean Least Squares**

Boolean least-squares problem is to

minimize  $||Ax - b||_2^2$  subject to  $x_i^2 = 1, \quad i = 1, \dots, n$ 

- basic problem in digital communications (noisy channel)
- could check all  $2^n$  possible values of  $x \dots$
- an NP-hard problem, and very hard in practice
- many heuristics for approximate solution

# **Example: Partitioning Problem**

two-way partitioning problem ( $\S5.1.5$  in [BV04]):

minimize  $x^T W x$ subject to  $x_i^2 = 1, \quad i = 1, \dots, n$ 

where  $W = W^T$ ,  $W_{ii} = 0$ 

- feasible  $x \in \{-1, 1\}$  corresponds to partitioning
- coefficients  $W_{ij}$  interpreted as the cost of having the elements i and j in the same partition.
- the objective is to find the partition with least total cost
- classic particular instance: MAXCUT  $(W_{ij} \ge 0)$

# **Example: cardinality problems**

 $\begin{array}{l} \mbox{minimize } \mathsf{card}(x) \\ \mbox{subject to } x \in \mathcal{C} \end{array}$ 

introduce 
$$z_i \in \{0, 1\}$$
, i.e.  $z_i(1 - z_i) = 0$ ,

minimize 
$$\mathbf{1}^T z$$
  
subject to  $z_i - z_i^2 = 0$ ,  $x_i(1 - z_i) = 0$   $i = 1, ..., n$   
 $x \in \mathcal{C}$ 

### Semidefinite relaxation

original QCQP

minimize 
$$x^T A_0 x + b_0^T x + c_0$$
  
subject to  $x^T A_i x + b_i^T x + c_i \le 0, \quad i = 1, \dots, m.$ 

is equivalent to

minimize 
$$\mathbf{Tr}(A_0X) + b_0^T x + c_0$$
  
subject to  $\mathbf{Tr}(A_iX) + b_i^T x + c_i \le 0, \quad i = 1, \dots, m$   
 $X = xx^T$ 

change  $X = xx^T$  into  $X \succeq xx^T$ 

# Lagrangian relaxation

original QCQP

minimize 
$$x^T A_0 x + b_0^T x + c_0$$
  
subject to  $x^T A_i x + b_i^T x + c_i \le 0, \quad i = 1, \dots, m.$ 

forming Lagrangian

$$L(x,\lambda) = x^T \left( A_0 + \sum_{i=1}^m \lambda_i A_i \right) x + \left( b_0 + \sum_{i=1}^m \lambda_i b_i \right)^T x + c_0 + \lambda^T c$$

recall that

$$\inf_{x} \{x^T P x + q^T x + r\} = \begin{cases} r - \frac{1}{4} q^T P^{\dagger} q & \text{if } P \succeq 0, \quad q \in \mathcal{R}(P) \\ -\infty & \text{otherwise} \end{cases}$$

# Lagrangian relaxation: dual

$$L(x,\lambda) = x^T \Big( A_0 + \sum_{i=1}^m \lambda_i A_i \Big) x + \Big( b_0 + \sum_{i=1}^m \lambda_i b_i \Big)^T x + c_0 + \lambda^T c$$
  
has (for  $B = [b_1 \cdots b_m]^T \in \mathbf{R}^{m \times n}$ )

$$g(\lambda) = \inf_{x} L(x,\lambda)$$
  
=  $-\frac{1}{4}(b_0 + B^T\lambda)^T \left(A_0 + \sum_{i} \lambda_i A_i\right)^{\dagger}(b_0 + B^T\lambda) + \lambda^T c + c_0$ 

#### Lagrangian relaxation: dual

Taking Schur complements gives dual problem

$$\begin{array}{l} \text{maximize } \frac{1}{4}\gamma + c^T\lambda + c_0 \\ \text{subject to } \begin{bmatrix} (A_0 + \sum_{i=1}^m \lambda_i A_i) & (b_0 + B^T\lambda) \\ (b_0 + B^T\lambda)^T & -\gamma \end{bmatrix} \succeq 0, \\ \lambda \succeq 0 \end{array}$$

semidefinite program in variable  $\lambda \in \mathbf{R}^m_+$  and can be solved "efficiently"

#### Lagrangian relaxation: Bidual

Taking dual again gives SDP

minimize 
$$\operatorname{Tr}(A_0 X) + b_0^T x + c_0$$
  
subject to  $\operatorname{Tr}(A_i X) + b_i^T x + c_i \leq 0, \quad i = 1, \dots, m$ 
$$\begin{bmatrix} 1 & x^T \\ x & X \end{bmatrix} \succeq 0$$

in variables  $X \in \mathbf{S}^n$ ,  $x \in \mathbf{R}^n$ 

- have recovered original SDP relaxation "automatically"
- convexification of original problem!

# **Example:** Partitioning

minimize  $x^T W x$ subject to  $x_i^2 = 1, \quad i = 1, \dots, n$ 

no need to maintain variable x, gives relaxation (via  $X = xx^T$ )

minimize  $\operatorname{Tr}(WX)$ subject to  $X \succeq 0$ ,  $\operatorname{diag}(X) = 1$ 

# Feasible points?

- have lower bounds on optimal value of problem
- big question: how do we compute good feasible points?
- can we measure if our lower bound is suboptimal?

#### Simplest idea: randomization

original problem

minimize 
$$x^T A_0 x + b_0^T x + c_0$$
  
subject to  $x^T A_i x + b_i^T x + c_i \leq 0, \quad i = 1, \dots, m.$ 

and relaxation

minimize 
$$\mathbf{Tr}(A_0 X) + b_0^T x + c_0$$
  
subject to  $\mathbf{Tr}(A_i X) + b_i^T x + c_i \leq 0, \quad i = 1, \dots, m$   
 $X - xx^T \succeq 0$ 

• if X, x solve relaxed problem, then  $X - xx^T \succeq 0$  can be a covariance matrix.

# **Gaussian randomization**

- pick z as a Gaussian variable with  $z \sim \mathcal{N}(x, X xx^T)$
- z will solve the QCQP "on average" over this distribution in other words:

minimize 
$$\mathbf{E}[z^T A_0 z + b_0^T z + r_0]$$
  
subject to  $\mathbf{E}[z^T A_i z + b_i^T z + c_i] \le 0, \quad i = 1, \dots, m$ 

a good feasible point obtained by sampling enough z (often more sophisticated strategies)

### Gaussian randomization

- possible to get sharper guarantees and exactly feasible points, e.g. for MAXCUT or other boolean problems
- constraint

$$x_{i}^{2} = 1$$

so just take  $x_i = \operatorname{sign}(z_i)$ 

• for 
$$\hat{x} = \operatorname{sign}(z_i)$$
,  $z_i \sim \mathcal{N}(0, X)$ , have

$$\mathbf{E}[\hat{x}_i \hat{x}_j] = \frac{2}{\pi} \operatorname{arcsin}(X_{ij})$$

#### **Approximation guarantees**

MAXCUT relaxation

maximize  $\mathbf{Tr}(WX)$ subject to  $\mathbf{diag}(X) = \mathbf{1}, X \succeq 0$ 

gives

$$\mathbf{E}[\hat{x}^T W \hat{x}] = \frac{2}{\pi} \mathbf{E}[W \operatorname{arcsin}(X)]$$

- draw a few samples  $\hat{x}$ , get at least that good with high probability
- optimal value of MAXCUT is between  $\frac{2}{\pi} \operatorname{Tr}(W \operatorname{arcsin}(X))$  and  $\operatorname{Tr}(WX)$ .

# Better rounding (Goemans & Williamson) suppose $W_{ij} \ge 0$ , maximize

$$\sum_{ij} W_{ij}(1 - X_{ij}) \text{ subject to } \operatorname{diag}(X) = \mathbf{1}, \ X \succeq 0$$

- sample coordinates  $\hat{x}_i$  at random, get  $\mathbf{Tr}(W) \mathbf{E}[\hat{x}^T W \hat{x}] = \mathbf{Tr}(W)$ , at least 50% optimal
- sample directions:

$$X_{ij} = v_i^T v_j$$
 with  $\|v_i\| = 1$ 

i.e.  $X = V^T V$  by Cholesky

• draw Z uniformly at random on unit sphere, set

$$\hat{x}_i = \mathbf{sign}(Z^T v_i)$$

# Better rounding (Goemans & Williamson)

expected value of cut is

$$\begin{split} \mathbf{E}[W_{ij}(1-\hat{x}_i\hat{x}_j)] &= 2W_{ij} \operatorname{Pr}(Z \text{ separates } v_i, v_j) \\ &= 2W_{ij} \operatorname{Pr}(\operatorname{sign}(v_i^T Z) \neq \operatorname{sign}(v_j^T Z)) \\ &= 2W_{ij} \frac{2\theta(v_i, v_j)}{2\pi} \\ &= \frac{2}{\pi} W_{ij} \cos^{-1}(v_i^T v_j) \end{split}$$

SO

$$\sum_{ij} \mathbf{E}[W_{ij}(1 - \hat{x}_i \hat{x}_j)] = \frac{2}{\pi} \sum_{ij} W_{ij} \cos^{-1}(X_{ij})$$

• Fact:  $\cos^{-1}(t) \ge \frac{\pi}{2}\alpha(1-t)$ ,  $\alpha \approx .87856$ 

#### Better rounding: final bound

• expected weight from random cut generated by optimal X is at least

$$\frac{2}{\pi} \sum_{ij} W_{ij} \cos^{-1}(X_{ij}) \ge \alpha \sum_{ij} W_{ij}(1 - X_{ij}) = \alpha \mathsf{SDP}^*.$$

• alternatives: if  $W \succeq 0$ , then (Nesterov 98)

 $\operatorname{Tr}(W\operatorname{arcsin}(X)) \ge \operatorname{Tr}(WX)$ 

so (using earlier bound)

$$\mathsf{SDP}^* \geq \mathsf{OPT} \geq \frac{2}{\pi}\mathsf{SDP}^*$$

#### **Example: boolean least squares**

- (randomly chosen) parameters  $A \in \mathbf{R}^{150 \times 100}$ ,  $b \in \mathbf{R}^{150}$
- $x \in \mathbf{R}^{100}$ , so feasible set has  $2^{100} \approx 10^{30}$  points

**LS approximate solution:** minimize ||Ax - b|| s.t.  $||x||_2^2 \le n$ , then round yields objective 8.7% over SDP relaxation bound

randomized method: (using SDP optimal distribution)

- $\bullet$  best of 20 samples: 3.1% over SDP bound
- $\bullet$  best of 1000 samples: 2.6% over SDP bound



#### **Example:** partitioning problem

minimize  $x^T W x$ subject to  $x_i^2 = 1, \quad i = 1, \dots, n$ 

with SDP relaxation

minimize  $\mathbf{Tr}(WX)$ subject to  $\mathbf{diag}(X) = \mathbf{1}, X \succeq 0$ 

and solution  $X^{\text{opt}}$ 

- generate samples  $x^{(i)} \sim \mathcal{N}(0, X^{\text{opt}})$ ,  $\hat{x}^{(i)} = \operatorname{sign}(x^{(i)})$
- take one with lowest cost (SDP<sup>opt</sup> is -1641)



heuristic on 1000 samples: minimum value attained is -1328

