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1 Robust optimization

Robust (convex) optimization problems are a class of convex optimization problems in which
we take the somewhat agnostic view that our problem data is not exact. As in essentially
no situations in which one has actually collected data can we represent things exactly, this
explicit modeling of data uncertainty can prove extremely useful, and we will see several
examples of this in this note.

Abstractly, robust convex optimization problems are formulated with an uncertainty set
U , convex objective f0 : R

n → R, and functions fi : R
n×U → R such that fi(·, u) is convex

for each u ∈ U . With this abstract formulation in mind, the most general form for robust
convex optimization is as follows: we wish to solve

minimize f0(x)

subject to fi(x, u) ≤ 0 for all u ∈ U , i = 1, . . . ,m.
(1)

The problem (1) is a convex optimization problem, as it is clearly equivalent to

minimize f0(x)

subject to sup
u∈U

fi(x, u) ≤ 0 i = 1, . . . ,m,

and suprema of collections of convex functions are convex. We can always consider the
constraint functions fi individually, as they must all be satisfied for all u. Moreover, we
always assume that the objective functions f0 are fixed and not subject to uncertainty; if
this is not the case, we may replace the objective with its worst case value supu∈U f0(x, u),
and then write this in epigraph form by introducing the variable t: minimize t subject to
f0(x, u) ≤ t for all u ∈ U . Additionally, we never include equality constraints, as “robust”
equality constraints make little sense: how could satisfy (a+ u)Tx = b for all u ∈ U for only
very restrictive sets U .

Now, we must answer three questions about the above formulation: first, is it useful?
Second, is it computable? And third, how should we choose the uncertainty sets U (perhaps
to help with the first two issues)?

1.1 An example and failure of classical optimization

We begin by considering a linear program originally described by Ben-Tal, El Ghaoui, and
Nemirovski [BTGN09], with variables c ∈ Rn, A ∈ Rm×n, and b ∈ Rm, which comes from
a medical production example. We have a cost vector c = [100 199.9 − 5500 − 6100]T

corresponding to costs and profits of selling two drugs, and constraints Ax ≤ b on their
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Here, −.01 and −.02 correspond to percentages of chemicals in the raw materials used for
making components of the different drugs; if we modify them only slightly, things can get
out of hand very quickly.

Indeed, let us assume that the prices .01 and .02 vary by at most .5% and 2%, and that
the variability is distributed uniformly in .01± .00005 and .02± .0004. In Figure 1, we show
the results of a Monte Carlo simulation in which we drew 104 samples uniformly varying
the −.01 and −.02 entries of A as described, where we correct production (i.e. modify the
nominal solution x) by reducing x3 and x4 to address increases in A11 or A12 so that we
still satisfy the constraint

∑4
i=1A1ixi ≤ 0. We plot the frequency of relative changes in

optimal value cTx after this (tiny) random perturbation; in at least 25% of the experiments,
we lose at least 15% of the profits associated with production (and often 20% or more). This
suggests that a reformulation of our problem to address the uncertainty is warranted; in fact,
if we instead solve

minimize cTx

subject to (A+∆)x ≤ b

for all matrices ∆ with |∆11| ≤ .00005 and |∆12| ≤ .0004, with ∆ij = 0 otherwise, we find
an optimal solution whose degradation is at most 6% over the nominal.

1.2 Robustness can be hard

As written in the abstract formulation (1), it is not clear whether we should expect to be able
to solve robust optimization problems. In general, in spite of the convexity of the objective,
it is not the case that all robust convex optimization problems can be solved. Consider the
following example. Suppose we would like decide whether the following convex (quadratic
even) inequality may be satisfied:

‖Ax+ Bu‖2 ≤ 1, for all u s.t. ‖u‖∞ ≤ 1. (2)

Unfortunately, by taking A = 0, this amounts to checking whether uTBTBu ≤ 1 for all
vectors u such that ‖u‖∞ ≤ 1; as this is convex in u over the compact set {u ∈ Rn |
‖u‖∞ ≤ 1}, the maximum must be attained at one of the extreme points u ∈ {−1, 1}n. But
then to check whether the constraint (2) is feasible, we must be able to maximize non-convex
quadratic functions over the hypercube, which is NP-hard even to do approximately [H̊as01].
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Figure 1: Frequency of fluctations to a certain level for the non-robust production
planning problem with .5% fluctuations in material proportions.

1.3 What we consider

With these examples in mind, we arrive at three major questions for robust optimization:

(1) Why should we attempt to be robust?

(2) What problems can we actually solve robustly?

(3) How should we choose the uncertainty sets U?

For the first question, one reason is clear: because data may be uncertain, and it is
unreasonable to assume we have perfectly represented any real number a ∈ R. (And with
even tiny relative changes, as in § 1.1, we can huge swings in solution quality.) There are
other reasons as well, which we discuss subsequently. We can use robustness as a proxy
for dealing with randomness whose values we do not know, and in some cases robust opti-
mization techniques allow us to tractably approximate non-convex probabilistic constraints.
The second question we illustrate via examples in linear programming, second order cone
programs, and semidefinite programs; however, as the constraint ‖Ax+ Bu‖2 ≤ 1 for all
u ∈ [−1, 1]n makes clear, we must be careful. A major theme in efficient representation of
robust uncertainty sets is duality and dual representations, which allows us to turn infinite
(or semi-infinite) sets of constraints into a few simpler inequalities. Lastly, choosing uncer-
tainty sets is an important question, as it effects both whether we can efficiently represent
a robust problem, and choosing too large an uncertainty set U can yield robust solutions
that are so conservative—the resulting solutions of such low quality for the objective f0 at
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hand—as to lose essentially any advantage over non-robust optimization. One important
tool here, which we will see, is the use of probabilistic guarantees to choose uncertainty sets
U .

2 Robust linear programs

We first consider robust linear programs, which provide the simplest set of examples for
tractable robust optimization formulations. An important question in robust optimization is
in which scenarios the robust formulation remains in the same “problem class” as the original
non-robust (certain) problem. That is, when is a robust linear program still a (similarly-
sized) linear program, when is a robust second order cone problem still an SOCP, when is
a robust SDP still an SDP, when is a robust geometric program a geometric program. As
a running example, we will use extensions of a simple portfolio optimization problem to
illustrate the ideas.

2.1 Robust LPs as LPs

For our first set of robust problems, we consider polyhedral uncertainty sets, which allow
the simplest “tractable” representations. In particular, we consider the problem of solving

minimize cTx

subject to (A+ U)x � b for U ∈ U .

Because we can always represent the robust formulation constraint-wise, we will only consider
the single robust inequality

(a+ u)Tx ≤ b for all u ∈ U . (3)

The simplest set U is to have interval-based uncertainty, that is, we know that uj ∈ [−δ, δ]
for each coordinate j (i.e. ‖u‖∞ ≤ δ). In this case, a direct calculation gives that

sup
u∈U

(a+ u)Tx = aTx+ δ ‖x‖1 ,

so that the robust inequality (3) is equivalent to the linear inequality aTx + δ ‖x‖1 ≤ b.
Similarly, if U is an ℓ1-ball, we have a robust formulation of the form aTx + δ ‖x‖∞ ≤ b.
Both of these inequalities place additional restrictions on the acceptable values for x, which
has the effect of “robustifying” solutions to the linear program.

A more general version of this setting is polyhedral uncertainty, where for a matrix F ∈
Rm×n and vector g ∈ Rm, we have the robust inequality

(a+ u)Tx ≤ b for u ∈ U = {u ∈ Rn | Fu+ g � 0} .

In this case, duality plays an important role in giving a tractable representation of the above
semi-infinite inequality (we transform “for-all” quantifiers into existence quantifiers). Indeed,
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writing the Lagrangian for the maximization problem over uTx by introducing the variable
λ � 0, we have

L(u, λ) = xTu+ λT (Fu+ g) and sup
u
L(u, λ) =

{

+∞ if F Tλ+ x 6= 0

λT g if F Tλ+ x = 0.

In particular, as all the inequality constraints are linear, strong duality obtains, and we have
that

sup
u∈U

uTx = inf{λT g | F Tλ+ x = 0, λ � 0}.

Thus the robust linear inequality with polyhedral uncertainty is equivalent to the three linear
equations

aTx+ λTg ≤ b, F Tλ+ x = 0, λ � 0.

So for any polyhedral uncertainty set U , we may write the resulting robust linear program as
a standard linear program of essentially the same size (modulo a few additional constraints)
as the original linear program.
Example 1: Portfolio optimization. In the portfolio optimization problem, we seek to
invest in a collection of n assets i = 1, . . . , n, each of which has random return Ri with
expectation ERi = µi ≥ 1 (our wealth is multiplied by a factor Ri if we invest in asset
i), where we assume that ER1 = µ1 ≥ µ2 ≥ . . . ≥ µn. We let xi denote the proportion
of resources invested in asset i, and maximizing our expected returns corresponds to the
certainty-equivalent problem

maximize µTx subject to 1Tx = 1, x � 0. (4)

The solution to the problem (4) is clearly to put all the resources into the asset with highest
mean, µ1.

This ignores variability in the solutions, which of course is an important part of any
optimization scheme with random data. Now, suppose we know that each asset i varies in
a range µi ± ui, where u1 ≥ u2 ≥ . . . ≥ un = 0, where we assume the last asset is given
by investing all of our money in the bank. Then the (most conservative) robust solution
to the portfolio optimization problem is to maximize our worst case return subject to our
uncertainties:

maximize
n
∑

i=1

inf
u∈[−ui,ui]

(µi + u)xi subject to 1Tx = 1, x � 0.

Clearly, this is equivalent to the problem

maximize µTx−
n
∑

i=1

ui|xi| subject to 1Tx = 1, x � 0.

We now fix values for the µi and ui and study the robust and non-robust solution. We
set µi = 1.05+ .3n−i

n
and the uncertainty bounds ui = .05+ .5n−i

n
, except that un = 0. Then
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by inspection, the solutions to the non-robust problem are xnom = e1, the first basis vector
(we invest fully in the riskiest but highest return asset), and the robust problem we put all
of our money in the least risky asset, xrob = en. So, for example, we we assume that each
asset has return Ri = µi + ui with probability 1/2 and return Ri = µi − ui with probability
1/2, in the non-robust case, there is a 50% chance we lose about 50% of our wealth, while
in the robust case, we simply increase wealth by 5%. ♦

2.2 Robust LPs as SOCPs

We can allow other types of uncertainty in the parameters a in our linear inequalities.
Another standard uncertainty type is norm-based uncertainty in the vectors a, meaning
there exists a matrix P ∈ Rn×m such that that our uncertain inequality is of the form

(a+ Pu)Tx ≤ b for u ∈ U = {u ∈ Rm | ‖u‖ ≤ 1},

where ‖·‖ is some norm. We may directly take a supremum over all such u, which gives us
the dual norm constraint

aTx+
∥

∥P Tx
∥

∥

∗
≤ b,

which follows because sup‖u‖≤1(Pu)
Tx = sup‖u‖≤1 u

TP Tx = ‖P Tx‖∗ by definition of the dual
norm. So, for example, we may use the ellipsoidal uncertainty set given by U = {u ∈ Rm |
‖u‖2 ≤ 1}, which gives the second order cone inequality

aTx+
∥

∥P Tx
∥

∥

2
≤ b.

Example 2: Portfolio optimization (Example 1 continued). Let us put ourselves back in
the setting of Example 1, where we assume that our returns Ri ∈ [µi−ui, µi+ui] and satisfy
ERi = µi for each i. Now, rather than guaranteeing a certain return—being extremely
conservative—suppose we want to guarantee a return that holds with probability ≥ 1− ǫ for
some small ǫ > 0 (this is known as value at risk). That is, we would like to solve

maximize t subject to Prob

(

n
∑

i=1

Rixi ≥ t

)

≥ 1− ǫ.

This is non-convex, but we may approximate it with appropriate uncertainty sets.
In the robust formulation of Example 1, we chose ǫ = 0 to give a guaranteed return of

µn, the bank interest rate. Somewhat more careful control of the probability of failure gives
better returns for small (non-zero) ǫ. First we note that by Hoeffding’s inequality (see § 7
for derivations of these guarantees and more on the choice of uncertainty sets), we have that
for Ri bounded as above, for any t ≥ 0, and any fixed vector x ∈ Rn,

Prob

( n
∑

i=1

(Ri − µi)xi ≤ −t
)

≤ exp

(

− t2

2
∑n

i=1 x
2
i u

2
i

)

.
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Written slightly differently,

Prob

[

n
∑

i=1

Rixi ≤ µTx− t

( n
∑

i=1

u
2
ix

2
i

)
1

2

]

≤ exp

(

−t
2

2

)

,

and taking t =
√

2 log 1
ǫ
, we obtain that

∑n
i=1Rixi ≥ µTx −

√

2 log 1
ǫ
‖diag(u)x‖2 with

probability at least 1 − ǫ. This gives us the robust problem (much less conservative than
that of Example 1)

maximize µTx−
√

2 log
1

ǫ
‖diag(u)x‖2 subject to 1Tx = 1, x � 0.

This corresponds to the uncertainty set given by the diagonally scaled ℓ2 ball

U =

{

u ∈ Rn |
∥

∥diag(u)−1/2u
∥

∥

2
≤
√

2 log
1

ǫ

}

in the robust inequality (µ+ u)Tx ≤ t for all u ∈ U .
Now we perform a small simulation study comparing the quality of the solutions given

by the nominal solution xnom = e1, the extremely conservative solution xcon = en, and the
robust solution xǫ with value-at-risk ǫ = 2 × 10−4. In Figure 2, we plot the results of a
simulation study in which returns are chosen uniformly at random from [µi − ui, µi + ui].
We see that the nominal solution has better maximum returns (and average), but has some
substantial failures as well, while the solution with fixed value at risk ǫ = 2 · 10−4 has some
variability, but we are guaranteed to have return at least 1.08 with probability at least 1− ǫ.
♦

2.3 LPs with conic uncertainty

The most general form of constraints we consider for linear programs are general conic
uncertainty sets; these include as special cases all of the examples in this section, among
many others, including semidefinite uncertainty. Recall that a set K ⊂ Rm is a convex
cone if for all x ∈ K, we have tx ∈ K for all t ≥ 0, and K is convex. We also let
K∗ = {v ∈ Rm | vTx ≥ 0 for all x ∈ K} denote the dual cone to K. We define the
generalized (cone) inequality x �K y if x− y ∈ K (recall [BV04, Chapters 4.6 and 5.9]), and
we consider the robust inequality

(a+ u)Tx ≤ b for u ∈ U = {u ∈ Rn | Fu+ g �K 0}, (5)

where F ∈ Rm×n and g ∈ Rn are fixed. We now show how, if we can represent K efficiently,
duality can let us write the infinite collection of inequalities (5) as a small set of standard
convex (cone) inequalities.
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Figure 2: Histogram of random returns for model described in examples 1 and 2.

To begin, we assume that the inequality Fu+ g �K 0 can be satisfied strictly, that is, a
Slater condition holds (i.e. there is a ū ∈ Rn such that Fu+ g ∈ relintK). In this case, we
have that strong duality obtains for the problem of maximizing uTx over u ∈ U , and writing
the Lagrangian for this (concave) problem, we have for λ �K∗ 0

L(u, λ) = uTx+ λT (Fu+ g) and sup
u
L(u, λ) =

{

+∞ if x+ F Tλ 6= 0

λTg if x+ F Tλ = 0.

By strong duality, we have supu∈U u
Tx = infλ�K∗0{gTλ | x + F Tλ = 0}, and the latter

infimum is attained at some λ⋆, so that inequality (5) is equivalent to the three inequalities

aTx+ λTg ≤ b, λ �K∗ 0, x+ F Tλ = 0.

Example 3: Linear programs with semidefinite uncertainty. Suppose we have symmetric
matrices A0, A1, . . . , Am ∈ Sm, and for a single constraint aTx ≤ b we have the robust
counterpart

(a+ Pu)Tx ≤ b for all u s.t. A0 +
m
∑

i=1

uiAi � 0

for some matrix P ∈ Rn×m. Using the preceding derivation with positive semidefinite cone
K = {X ∈ Sm | X � 0} (which is self-dual), then assuming there exists some ū such that
A0 +

∑m
i=1Aiui ≻ 0, the uncertain inequality is equivalent to the existence of a positive

semidefinite matrix Λ � 0 such that

aTx+Tr(ΛA0) ≤ b, and P Tx+







Tr(ΛA1)
...

Tr(ΛAm)






= 0.
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♦

3 Robust cone programs

In this section, we consider second-order (like) cone programs, giving examples in which
duality or direct calculations allow us to efficiently represent our uncertainty, that is, to
write the robust problem using standard convex formulations. The starting point for all of
our derivations in this section is a (minor extension of) the standard second order (Lorentz)
cone, where we consider the constraint

‖Ax+ b‖2 ≤ cTx+ d, (6)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R, and we denote the rows of A by ai ∈ Rn.

3.1 SOCPs with interval uncertainty

The simplest—yet still general—robustification of the constraint (6) is to uncertainty ∆ ∈
Rm×n to the matrix A where the uncertainty is uniformly bounded as |∆ij| ≤ δ for some
δ > 0. We can also easily add—building off of the conic representations in § 2.3—conic
uncertainty to the vectors on the right hand side, which leaves us with the robust set of
inequalities

‖(A+∆)x+ b‖2 ≤ (c+ u)Tx+ d for all ∆ s.t. ‖∆‖∞ ≤ δ, u ∈ U , (7)

where U = {u : Fu+ g �K 0} for a convex cone K.
By breaking inequality (7) into two inequalities, namely, ‖(A+∆)x+ b‖2 ≤ t and t ≤

(c + u)Tx + d for some t ∈ R+, we can address each side in turn. The right hand side of
inequality (7) is handled identically to the results in § 2.3 on robust linear programs: we
have for any t that t ≤ (c+ u)Tx+ d for all u ∈ U if and only if we can find solutions to the
three inequalities

t ≤ cTx+ d− λT g, x = F Tλ, λ �K∗ 0.

For the left hand side ‖(A+∆)x+ b‖2 ≤ t, we have by direct calculation that

sup
∆:|∆ij |≤δ

‖(A+∆)x+ b‖2 = sup
∆:|∆ij |≤δ

( m
∑

i=1

[(ai +∆i)
Tx+ bi]

2

)
1

2

= sup
∆∈R

m×n

{

‖z‖2 | zi = aTi x+∆T
i x+ bi, ‖∆i‖∞ ≤ δ

}

= inf
{

‖z‖2 | zi ≥ |aTi x+ b|+ δ ‖x‖1
}

.

Combining these results, we find that the infinite collection of inequalities (7) is equivalent to
a small number of convex inequalities and linear equalities in the variables z ∈ Rm, λ �K∗ 0,
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and x ∈ Rn:

‖z‖2 ≤ cTx− λT g + d, x = F Tλ, λ �K∗ 0,

zi ≥ |aTi x+ bi|+ δ ‖x‖1 for i = 1, . . . ,m.

Based on the decomposition of the right and left sides and the results on robust linear
inequalities, for these types of conic problems we really need only consider robustifying
inequalities of the form ‖Ax+ b‖2 ≤ t for x ∈ Rn and t ∈ R+.

3.2 SOCPs with ellipsoidal uncertainty

A variation of the uniform interval constraints in the preceding section is to consider ellip-
soidal uncertainty on each of the rows of the matrix A; see also [BV04, Chapter 6.4]. In this
case, we assume there are matrices P1, . . . , Pm ∈ Rn×n, and we represent the uncertainty in
the matrix A as ai+Piu for vectors u such that ‖u‖2 ≤ 1. Our robust (uncertain) inequality
is

( m
∑

i=1

[(ai + Piu)
Tx+ bi]

2

)
1

2

≤ t for all u s.t. ‖u‖2 ≤ 1.

By inspection, we may rewrite this with variables zi ≥ sup‖u‖
2
≤1 |aTi x + bi + uTP T

i x|, which
is equivalent to zi ≥ |aTi x+ bi|+ ‖P T

i x‖2, giving the equivalent robust inequality

‖z‖2 ≤ t, zi ≥ |aTi x+ bi|+
∥

∥P T
i x
∥

∥

2
for i = 1, . . . ,m.

In particular, we can take a second order cone inequality with row-wise ellipsoidal uncertainty
and represent it as a collection of O(m) second order cone and linear inequalities. In partic-
ular, aside from additional inequalities, there is no increase in complexity for robustness in
this case.

3.3 SOCPs with matrix uncertainty

We now consider a slightly more complicated situation than that outlined in the previous
section, instead looking at uncertainty in the matrix A given by a matrix ∆ with an operator
norm (the induced ℓ2-norm) bound on ∆. In this case, we require substantially more complex
duality arguments to give an efficient representation of our robust problem. First, our
uncertain inequality in this case is specified by a matrix P ∈ Rm×n and scalar δ > 0, and
would like to guarantee that

‖(A+ P∆)x+ b‖2 ≤ t, for ∆ ∈ Rn×n s.t. ‖∆‖ ≤ δ, (8)

where ‖∆‖ = sup‖u‖
2
=‖v‖

2
=1 u

T∆v is the maximum singular value (operator norm) of ∆.
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To derive a dual representation of the inequality (8), we require two results: the Schur
complement representation of a the second order cone and the S-lemma.1 The first is that
the following two inequalities are equivalent:

‖x‖2 ≤ t and

[

t xT

x tIn

]

� 0.

The S-lemma is used to show that strong duality still obtains for non-convex quadratic
problems as long as there are at most two quadratics, though we do not prove this here. The
S-lemma is the following:

xTAx ≥ 0 implies xTBx ≥ 0 if and only if ∃ λ ≥ 0 s.t. B � λA. (9)

For a proof of this fact using semidefinite programming duality, see Appendix A.
Now, we give a characterization of inequality (8) by combining these two results. Indeed,

by Schur complements we have that the infinite inequalities (8) are equivalent to
[

t ((A+ P∆)x+ b)T

(A+ P∆)x+ b tIm

]

� 0 for ‖∆‖ ≤ 1.

By left and right multiplying the positive definite inequality by [s vT ] and [s vT ]T for s ∈ R

and v ∈ Rm, this is equivalent to

ts2 + 2s((A+ P∆)x+ b)Tv + t ‖v‖22 ≥ 0 for all s ∈ R, v ∈ Rm, ‖∆‖ ≤ 1.

Taking an infimum over ‖∆‖ ≤ 1 in the preceding display, noting that sup‖∆‖≤1 u
T∆v =

‖uvT‖ = ‖u‖2 ‖v‖2, this is equivalent to

ts2 + 2s(Ax+ b)Tv + t ‖v‖22 − 2 ‖sx‖2 ‖P Tv‖2 ≥ 0 for all s ∈ R, v ∈ Rm.

We now give a second order representation for the final negative term in the above inequality,
which, combined with the Schur complement representation of an SOCP, gives us a linear
matrix inequality that is equivalent to the robust inequality (8). Indeed, note that

sup
{

uTx | ‖u‖22 ≤ ‖P Tv‖22
}

=
∥

∥P Tv
∥

∥

2
‖x‖2 ,

so we have that inequality (8) is equivalent to

ts2 + 2s(Ax+ b)Tv + t ‖v‖22 + 2suTx for all s ∈ R, v ∈ Rm, u ∈ Rn s.t. ‖u‖22 ≤
∥

∥P Tv
∥

∥

2

2
.

That is, we must have that




s
v
u





T 



0 0 0
0 PP T 0
0 0 −In









s
v
u



 ≥ 0 implies





s
v
u





T 



t (Ax+ b)T xT

Ax+ b t 0
x 0 0









s
v
u



 ≥ 0.

1The formal Schur complement lemma is that if X =

[

A B

BT C

]

, then if A ≻ 0, we have X � 0 if and

only if C −BTA−1B � 0 (cf. [BV04, Appendix A.5.5]). We only use the homogeneous S-lemma here; there
are more general versions, cf. [BV04, Appendix B].
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By the homogeneous S-lemma (9), we thus see that inequality (8) is equivalent to finding
x ∈ Rn and λ such that





t (Ax+ b)T xT

Ax+ b t− λPP T 0
x 0 λIn



 � 0.

3.4 Example: robust regression

We now consider an example application of the results in the preceding three sections, show-
ing how different choices of uncertainty sets can give different robustness results. We make
use of some random matrix theory, whose results we simply cite, to make our calculations
somewhat more precise and our results compelling. We would like to solve

minimize
x

‖Ax− b‖2 , (10)

but we assume that A ∈ Rm×n has been corrupted by a matrix ∆ ∈ Rm×n of i.i.d. standard
Gaussian random variables. We consider three uncertainty sets: the first based on bounds
on |∆ij| for all pairs i, j with high probability, the second bounds that hold on the ‖∆i‖2
(where ∆i denotes the ith row of ∆) for each i = 1, . . . ,m with high probability, and the
last based on bounds on the operator norm ‖∆‖ that hold with high probability. To do this,
we require a theorem whose results are well-known in probability theory (cf. [Ver12, §3.1];
we note also that these results are all sharp as t gets large, meaning that they cannot be
improved by any factors except outside the exponent).

Theorem 1 For each fixed i, j pair and any t ≥ 0,

Prob(|∆ij| ≥ t) ≤ 2 exp

(

−t
2

2

)

.

For each fixed i and any t ≥ 0,

Prob(‖∆i‖2 ≥
√
n+ t) ≤ exp

(

−t
2

2

)

.

Lastly, for the operator norm,

Prob(‖∆‖ ≥
√
m+

√
n+ t) ≤ exp

(

−t
2

2

)

.

Now we use Theorem 1 to give robust formulations similar in spirit to the preceding
sections on robust SOCPs. In particular, by using a union bound, Theorem 1 implies that
taking t∞(δ)2 = 2 log(2mn/δ), we have

Prob(max
i,j

|∆ij| ≥ t∞(δ)) ≤ 2mn exp

(

−t∞(δ)2

2

)

= δ,
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taking t2(δ)
2 = 2 log(m/δ) we have

Prob(max
i

‖∆i‖2 ≥
√
n+ t2(δ)) ≤ m exp

(

−t2(δ)
2

2

)

= δ,

while taking top(δ)
2 = 2 log 1

δ
gives

Prob(‖∆‖ ≥
√
n+

√
m+ top(δ)) ≤ exp

(

−top(δ)
2

2

)

= δ.

In particular, we consider solving the robust least squares approximation

minimize
x

sup
∆∈U

‖(A+∆)x− b‖2 (11)

where U is one of the three uncertainty sets

U∞ = {∆ | ‖∆‖∞ ≤ t∞(δ)},
U2 = {∆ | ‖∆i‖2 ≤

√
n+ t2(δ) for i = 1, . . . m},

Uop = {∆ | ‖∆‖ ≤
√
n+

√
m+ top(δ)}.

Each of these guarantees that our deviations have probability no more than δ, and each
satisfies Prob(∆ ∈ U)/δ → 1 as δ → 0.

In Figure 3, we plot the gap between the value ‖Axrob − b‖2 for the robust solution
xrob evaluated on the nominal data and nominal solution’s value, that is, ‖Ax⋆ − b‖2 =
infx ‖Ax− b‖2, as a function of the uncertainty level δ. (Small δ indicates robustness against
lower probability—more extreme—deviations). From the plot, we see that while each of the
uncertainty sets provides protection against deviations, the sets based on the ℓ2 norm of
the columns of ∆i and ‖∆‖∞ are far too conservative. In Figure 4, we plot histograms of
the actual objective value ‖(A+∆)x− b‖2 for the different robust solutions (as well as the
nominal solution) for several realizations of ∆. We see that the ellipsoidal uncertainty set U2

and interval set U∞ have less variability than the others—they are quite robust!—but their
solutions have very low quality.

4 Robust semidefinite programs

TODO...

5 General robust optimization problems

Probably coming too...

14



10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
10-1

100

101

102

        
        
        

δ

x∞
x2
xop

‖A
x̂
−
b‖

2
−

‖A
x
⋆
−
b‖

2

Figure 3: Objective value ‖Ax̂− b‖2 − ‖Ax⋆ − b‖2 versus δ for different robust
solutions, where x⋆ minimizes the nominal objective and x̂ denotes a robust solution.

6 Chance constraints and the choice of uncertainty sets

To this point, we have assumed simply that we are given an uncertainty set U , and we
would like to protect against all types of variability for every possible u ∈ U . There are two
major considerations in the choice of the uncertainty set U : first, whether it is tractable to
represent, meaning that our convex problem is still efficiently solvable, and second, whether
it is too conservative and how well it reflects the actual variability in our problem. As
the first question is generally handled on a problem-by-problem basis, we focus here on the
second question, studying how (1) we may use robust optimization-like tools to represent
uncertainty from randomness, and (2) how probabilistic tools allow us to efficiently represent
uncertainty sets.

With this in mind, we shift our focus now to the broad problem of chance-constrained
optimization, where we assume there exists a random variable U with (known or unknown)
probability distribution, and we would like to solve problems of the form

minimize f0(x)

subject to Prob(fi(x, U) > 0) ≤ ǫ, i = 1, . . . ,m.
(12)

Here ǫ is some fixed probability of failing to satisfy the (random) constraint fi(x, U) ≤ 0, and
one usually chooses ǫ to be something like .1 or .01. This problem is generally non-convex,
and a standard approach is to give safe approximations to the chance constraints (12), that
is, to find (convex) functions gi so that gi(x) ≤ 0 guarantees that Prob(fi(x, U) > 0) ≤ ǫ.
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Figure 4: Distribution of residuals for the robust least squares problem (11) with
different choices of uncertainty set (Unom = {0} and U∞, U2, and Uop). The his-
tograms are obtained from 105 random Gaussian matrices ∆ generated with variance
2.25. We see that the nominal solution is somewhat more disperse than the robust
solution, but the more conservative (larger) uncertainty sets U2 and U∞ are far too
large to be useful.

One immediate approach to handling these chance constraints is to choose any set U
containing U with high probability, that is, such that Prob(U ∈ U) ≥ 1 − ǫ, in which case
the robust constraint

fi(x, u) ≤ 0 for u ∈ U
guarantees that Prob(fi(x, U) > 0) ≤ ǫ. Using this approach, we may apply any of the
robust optimization ideas in the preceding part of this note, and this is the approach in
Example 2. Section 3.4 also gives three different such constructions, each of which gave
quite different performance; it is important to choose the set U to be as small as possible
while still guaranteeing Prob(U ∈ U) ≥ 1−ǫ. Often, however, rather than directly choosing
an uncertainty set U , it is useful to approximate (or directly represent) the probability of
error in the our chance constraints, which we now turn to.

6.1 Value at risk

We begin by looking at value-at-risk.2 For a random variable Z, the value at risk ǫ is

VaR(Z; ǫ) = inf {γ | Prob(Z ≤ γ) ≥ 1− ǫ} = inf {γ | Prob(Z > γ) ≤ ǫ} .
That is, it is the smallest value γ such that Z ≤ γ with probability at least 1 − ǫ, or the
probability that Z exceeds γ is at most ǫ. In financial applications, one usually replaces

2There are multiple symmetric definitions of this quantity that flip ǫ and 1 − ǫ. Compare the
books [BTGN09], [SDR09, Chapter 6.2.4] and the paper [RU00]. We focus on the one convenient for our
purposes, though we caution the reader to carefully check the definition used in any paper he or she reads.
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1− ǫ with η, in which case the value at risk involves the left (lower) quantile of a collection
of assets, and Z represents a return on investment; we wish to maximize the VaR(Z; η) for
some small η, say η ∈ {.1, .05, .01}, which means that the lowest η quantile of the returns
Z is no smaller than VaR(Z; η). For convex optimization problems, where Z = f(x, U)
represents a functional whose value we wish to satisfy f(x, U) ≤ 0 with high probability,
then

VaR(Z; ǫ) ≤ 0 if and only if Prob(Z > 0) ≤ ǫ.

That is, the value at risk of the random variable Z = fi(x, U) at level ǫ being non-positive
is equivalent to the chance constraints (12) holding. Unfortunately, except in very special
cases, the value at risk function yields non-convex constraints. Thus, as we see in the coming
sections
Example 4: Normal distributions and value at risk. In the case of normally distributed
data U and f(x, U) bilinear in x and U , the value at risk yields convex constraints. Indeed,
suppose that U ∈ Rn is distributed normally with mean µ and scaled identity covariance
matrix σ2I. Then xTU − γ ∼ N(µTx− γ, σ2 ‖x‖22), and we have that for Z = xTU , then

Prob(xTU ≤ γ) = Prob(Z ≤ γ) = Φ

(

γ − xTU

σ ‖x‖2

)

where Φ is the normal c.d.f., and thus

VaR(UTx− γ; ǫ) ≤ 0 if and only if γ ≥ µTx+ σΦ−1(1− ǫ) ‖x‖2 ,

which is a second order cone constraint if ǫ ≤ 1/2. ♦

6.2 Safe convex approximations for chance constraints

Instead of directly using VaR or choosing an uncertainty set U based on the random variable
U , we turn to directly constructing convex functions that upper bound the probability of
error. For simplicity, let Z be any random variable (where generally, we will have Z =
f(x, U)). Then if φ : R → R+ is non-negative and non-decreasing, we have

1 (z ≥ 0) ≤ φ(z)

for any z ∈ R, where 1 (z ≥ 0) = 1 if z ≥ 0 and 0 otherwise. In particular, we find that for
any α > 0, we have

Prob(Z ≥ 0) ≤ Eφ(α−1Z),

and thus, if we have
Eφ(α−1Z) ≤ ǫ,

we are guaranteed that Prob(Z ≥ 0) ≤ ǫ. This makes φ a safe (or conservative) approxi-
mation to the probability of Z ≥ 0, meaning it certifies that Prob(Z ≥ 0) ≤ ǫ.

Returning to the convex case, if φ is convex and f(x, U) is convex in x, then for all
α > 0, the function φ(α−1f(x, U)) is convex in x (an increasing convex function of a convex
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function). In addition, we may pose finding the best such α > 0 as a convex problem as
well. In particular, for any non-decreasing convex function φ : R → R+, the constraint

αEφ

(

f(x, U)

α

)

≤ αǫ

ensures that Prob(f(x, U) ≥ 0) ≤ ǫ whenever α > 0. Moreover, the perspective function
(w, α) 7→ αφ(w/α) is jointly convex in w and α for α > 0, so that we can optimize over both
x and α using convex optimization. We arrive at the convex constraint—which is tightest
for our approximating function φ—of

inf
α≥0

{

αEφ

(

f(x, U)

α

)

− αǫ

}

≤ 0. (13)

We now look at a few special cases, including an extension of these ideas to use moment
generating (or cumulant generating) functions to give more analytically tractable procedures.

6.3 Tightest convex bounds and conditional value at risk

We first look at the convex function φ(z) = [1 + z]+, where [x]+ = max{x, 0}, which cer-
tainly satisfies 1 (z ≥ 0) ≤ [1 + z]+. In this case, directly applying the perspective function
bound (13), we have that

inf
α≥0

{

αE

[

f(x, U)

α
+ 1

]

+

− αǫ

}

= inf
α≥0

{

E [f(x, U) + α]+ − αǫ
}

≤ 0 (14)

is a safe and convex approximation to the chance constraint Prob(f(x, U) > 0) ≤ ǫ. Often,
we replace α with −α above, and use E [f(x, U)− α]+ + αǫ ≤ 0, and we do not need to
constrain α ≤ 0. In fact, functions of the form [1 + α−1z]+, as α ranges between 0 and
∞, are in a sense the tightest safe convex approximations to the chance constraint (see the
exercises for more on this).

The constraint (14) is related to the value at risk, and if we define the conditional value
at risk (sometimes called the average value at risk)

CVaR(Z; ǫ) = inf
α

{

1

ǫ
E [Z − α]+ + α

}

,

then the constraint (14) is equivalent to CVaR(f(x, U); ǫ) ≤ 0. Moreover, for any con-
vex f , we have CVaR(f(x, U); ǫ) is convex in x, and so we have replaced the constraint
VaR(f(x, U); ǫ) ≤ 0 with the convex constraint CVaR(f(x, U); ǫ) ≤ 0.

Let us interpret CVaR a bit. First, note that we may (at least implicitly) minimize out
α in the definition; taking derivatives, we have

0 =
∂

∂α

{

α +
1

ǫ
E [Z − α]+

}

= 1− 1

ǫ
E 1 (Z ≥ α) = 1− 1

ǫ
Prob(Z ≥ α).
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In particular, if we set α⋆ to be such that ǫ = Prob(Z ≥ α⋆),3 then 0 = 1− 1
ǫ
Prob(Z ≥ α⋆),

and we have

CVaR(Z; ǫ) =
1

ǫ
E [Z − α⋆]+ + α⋆ =

1

ǫ
E [Z − α⋆]+ +VaR(Z; ǫ).

So we see that conditional value at risk always upper bounds the value at risk, and gives an
additional penalty for deviations above the specified level α⋆; minimizing conditional value
at risk consists of minimizing the upper ǫ quantile of the random Z plus a deviation penalty.
Additionally, we also have that the conditional tail expectation

E[Z | Z ≥ α⋆] = E[α⋆ + (Z − α⋆) | Z ≥ α⋆]

= α⋆ +
E [Z − α⋆]+

Prob(Z ≥ α⋆)
= α⋆ +

1

ǫ
E [Z − α⋆]+ = CVaR(Z; ǫ).

One difficulty of performing optimization using conditional value at risk is that, while
CVaR(f(x, U); ǫ) is convex in x whenever f is, it is very rare that we can give an analytic for-
mula for E [f(x, U)− α]+. For example, even if f(x, U) = xTU and the vector U ∈ {−1, 1}n
consists of independent coordinates taking only two values, E

[

UTx− α
]

+
is a combinatorial

sum. In practice, one usually performs a Monte Carlo simulation to approximate the ex-
pectation E [f(x, U)− α]+, using the empirical expectation as a proxy for the truth. While
simple, this too can become somewhat expensive for large problems, which justifies other
types of approximation.

6.4 Analytic approximation using moment generating functions

The function φ(z) = [1 + z]+ in the previous section gives the sharpest convex bounds on
Prob(Z > 0) = E 1 (Z > 0), but in some cases different upper bounds are useful. Here
we consider using φ(z) = ez, which clearly satisfies 1 (z > 0) ≤ φ(z). This gives the usual
Chernoff bound, that is, Prob(Z > t) ≤ E exp(λZ − λt) for all λ ≥ 0, and in this case, we
see that

E exp
(

α−1f(x, U)
)

≤ ǫ

is a safe approximation to the chance constraint Prob(f(x, U) > 0) ≤ ǫ. This approximation
is somewhat numerically unstable, though, so we explore bounds involving the moment
generating function a bit more. We first do so abstractly, then specialize to a few more
concrete examples using the probabilistic tools outlined in § 7.

If the random function f(x, U) is convex in x for all U , then the generalized log-sum-exp

3 More generally, we set α⋆ = inf{α | Prob(Z ≥ α) ≤ ǫ} = VaR(Z; ǫ), which guarantees that for any
α′ > α⋆, we have ǫ−E 1 (Z ≥ α′) > ǫ− ǫ > 0 and for α′ < α⋆ we have ǫ−E 1 (Z ≥ α′) < ǫ− ǫ < 0, so that
α⋆ is the minimizer in the definition of CVaR.
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function logE exp(f(x, U)) is convex in x. Indeed, for any λ ∈ [0, 1] we have

logE exp (f(λx+ (1− λ)y, U)) ≤ logE exp (λf(x, U) + (1− λ)f(y, U))

= logE
[

exp(f(x, U))λ exp(f(y, U))1−λ
]

≤ log
[

(E exp(f(x, U)))λ (E exp(f(y, U)))1−λ
]

(15)

= λ logE ef(x,U) + (1− λ) logE ef(y,U).

Here inequality (15) is Hölder’s inequality, that is, that aT b ≤ ‖a‖p ‖b‖q when 1
p
+ 1

q
= 1

taken with p = 1/λ and q = 1/(1−λ). Thus, we find that the cumulant generating function
(log of the moment generating function)

logE exp

(

f(x, U)

α

)

≤ log ǫ

is a safe approximation for the chance constraint Prob(f(x, U) > 0) ≤ ǫ, for any α >
0. Choosing the best possible α using the perspective function, we have the conservative
approximation

inf
α≥0

{

α logE exp

(

f(x, U)

α

)

+ α log
1

ǫ

}

≤ 0. (16)

The formulation (16) may not be useful if the moment generating function E exp(f(x, U))
is hard to compute exactly, but if we have any convex upper bounds ψ(x) ≥ logE exp(f(x, U))
convex in x, we can still have useful results. We illustrate a few examples, relying on so-called
sub-Gaussian random variables and focusing on uncertain linear constraints, that is, when
f(x, U) = UTx for some random vector U . In particular, let us assume that U = (U1, . . . , Un)
is mean-zero with independent components, and for any λ ∈ R, we have

E exp (λUi) ≤ exp

(

λ2σ2
i

2

)

for some σi ≥ 0. This holds with equality for normally distributed variables Ui ∼ N(0, σ2
i ),

and this inequality also holds for bounded random variables Ui, that is, if EUi = 0 and

Ui ∈ [−σi, σi], we have logE eλUi ≤ λ2σ2
i

2
. (See inequality (17) in Example 10 to follow.) In

particular, if we have such an inequality, we obtain that if f(x, t;U) = xTU − t, then

logE exp

(

f(x, t;U)

α

)

= logE exp

(

xTU

α
− t

α

)

≤
n
∑

i=1

x2iσ
2
i

2α2
− t

α
.

Rewriting, we see that inequality (16) is satisfied if

inf
α≥0

{

1

2α

n
∑

i=1

x2iσ
2
i − t+ α log

1

ǫ

}

=

√

2 log
1

ǫ
‖diag(σ)x‖2 − t ≤ 0.
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We now give two examples of this approach.
Example 5: Safe moment-generating function approximations with bounded random vari-
ables. Suppose we have f(x, U) = UTx, where the random variables Ui are independent and
satisfy EUi = µi and Ui ∈ [ai, bi]. Then a safe approximation to Prob(UTx > 0) ≤ ǫ is
given by

µTx+

√

1

2
log

1

ǫ
‖diag(b− a)x‖2 ≤ 0,

because logE exp(xTU) = logE exp(xT (U − µ) + xTµ) ≤ 1
8

∑n
i=1(bi − ai)

2x2i + µTx. ♦

Example 6: Analytic versus Monte Carlo approximations. Let us revisit the portfolio
problem, where we set the returns R ∈ Rn to have means µ ∈ Rn

+ with µi = 1.05 + .3/i,
where the random values Ri ∈ [µi − .6/i, µi + .6/i], so that the riskiest assets have the
highest expected returns. Letting σi = 1.2/i be the range of the Ri, we compare the analytic
approximation from the moment generating function as in Example 5 with a Monte Carlo
approximation to the CVaR constraint, that is, we maximize t subject to the constraints
x � 0, 1Tx = 1, and

inf
α≥0

E
[

t−RTx+ α
]

+
− αǫ ≤ 0 or t− µTx+

√

1

2
log

1

ǫ
‖diag(σ)x‖2 ≤ 0,

using a Monte Carlo approximation to the leftmost expectation. In Figure 5, we plot the
results of this approach in n = 15 dimensions and using m = 2 · 103 random samples R
to approximate the CVaR constraint, where we use ǫ = .1 The vertical lines represent the
values t⋆mc and t⋆an, the Monte Carlo and analytic lower bounds on the portfolio returns.
The resulting solutions violated the constraints RTx⋆ ≤ t⋆ with probability approximately
.02 with the analytic solution and with probability approximately .06 for the Monte Carlo
solution. We see that the analytic approximation with moment generating functions is more
conservative than the Monte Carlo-based solution using the tighter conditional value at risk.
♦

Example 7: Safe moment-generating function approximations with normal random vari-
ables. We revisit Example 4, which was exact for the normal distribution with variables
Ui ∼ N(µi, σ

2
i ). The value at risk guarantee is that

Prob(UTx > 0) ≤ ǫ iff VaR(UTx; ǫ) ≤ 0 iff 0 ≥ µTx+ Φ−1(1− ǫ) ‖diag(σ)x‖2 .

The moment generating function approximation (16) gives constraint

µTx+

√

2 log
1

ǫ
‖diag(σ)x‖2 ≤ 0.

In Figure 6, we plot Φ−1(1 − ǫ) against
√

2 log 1
ǫ
. While

√

2 log 1
ǫ
broadly tracks the true

inverse CDF for the normal, we see that for reasonable ǫ (say ǫ ≥ 10−2), the moment
generating function bound is substantially more conservative than the exact bound. ♦
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Figure 5: Performance on a portfolio optimization problem comparing Monte Carlo
approximation of a chance constraint using conditional value at risk to that using
the analytic SOCP derived from moment generating function bounds.
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Figure 6: Approximation to value at risk using moment generating function bound
for normal distribution.

7 Probability and tail bounds

In this section, we review several bounds on moment generating functions and tail inequalities
for probability distributions that prove useful for construction of uncertainty sets and for
approximation of chance constraints.

The quantity of our interest is (for the most part) a probability of the form

Prob

[

n
∑

i=1

ziUi ≥ t

]

≤ ǫ,

where Ui are random variables and zi are fixed parameters (that generally depend on our
optimization variables). We investigate a few different techniques for controlling this proba-
bility, including choosing a set U such that (U1, . . . , Un) ∈ U with probability at least 1−ǫ or
finding a t directly such that UT z < t with probability at least 1− ǫ. To this end, a variety
of tail bounds may prove useful.

The simplest tail bound for random variables is Markov’s inequality, that is, for a non-
negative random variable U and a ≥ 0,

Prob(U ≥ a) ≤ E[U ]

a
.
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From this, we obtain the familiar Chebyshev bound, which is that

Prob(U ≥ EU + t) ≤ Prob((U − EU)2 ≥ t2) ≤ E(U − EU)2

t2
.

For obtaining bounds on extremely low probability events, a common technique is the Cher-
noff bound, which also follows from Markov’s inequality: for any random variable U , and t
and any λ > 0, we have

Prob(U ≥ t) = Prob(eλU ≥ eλt) ≤ E eλU

eλt
, or Prob(U ≥ t) ≤ inf

λ≥0
E eλUe−λt.

The key in this technique is to carefully upper bound the moment generating function E eλU

of U , though it is very effective for bounding probabilities of deviation for sums of random
variables.
Example 8: Let Z be a mean-zero Gaussian random variable with variance σ2. Then

E exp(λZ) = exp

(

λ2σ2

2

)

,

and consequently for t ≥ 0, we have

Prob(Z ≥ t) ≤ inf
λ≥0

exp

(

λ2σ2

2
− λt

)

= exp

(

− t2

2σ2

)

as desired. ♦

Whenever there is a parameter σ ≥ 0 such that a mean-zero random variable satisfies
E eλU ≤ exp(λ

2σ2

2
), we call the random variable sub-Gaussian with parameter σ2; this is an

extremely useful concept.
Let us give a few more examples of sub-Gaussian random variables, and show how they

give useful tail bounds over sums of random variables. Indeed, we have Hoeffding’s inequality,
which gives sharp bounds on sums of sub-Gaussian random variables.
Example 9: Hoeffding’s inequality. Let U1, . . . , Un be independent mean-zero sub-Gaussian
random variables with parameters σ = (σ1, . . . , σn). Then

Prob

( n
∑

i=1

Ui ≥ t

)

≤ exp

(

− t2

2 ‖σ‖22

)

.

To see this, we use the Chernoff bound: letting Z = 1TU , we have

Prob(Z ≥ t) ≤ exp

(

λ2
∑n

i=1 σ
2
i

2
− λt

)

,

and minimizing over λ ≥ 0 gives the tail bound. ♦ Another useful result is that bounded
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random variables are sub-Gaussian, which means they have good concentration properties.
Example 10: Bounded random variables (Hoeffding’s lemma). Let U ∈ [a, b] be a mean
zero random variable, so that a ≤ 0 ≤ b. Then U is sub-Gaussian, and moreover,

E[exp(λU)] ≤ exp

(

λ2(b− a)2

8

)

. (17)

With inequality (17) in hand, we see that if U1, . . . , Un are independent random variables,
each bounded in [ai, bi], then by the previous example we have

Prob

( n
∑

i=1

Ui ≥ t

)

≤ exp

(

− 2t2
∑n

i=1(bi − ai)2

)

,

which is the classical Hoeffding inequality.
To see inequality (17), by the convexity of the exponential, we know that for x ∈ [a, b],

we have

eλx ≤ eλa
b− x

b− a
+ eλb

x− a

b− a
.

Taking expectations over the random variable U , which has mean zero, we thus find that

E[eλU ] ≤ b

b− a
eλa +

−a
b− a

eλb.

Defining z = λ(b− a) and p = b
b−a

, we obtain that pz = λb and (1− p)z = −λa, so that

E[eλU ] ≤ peλa + (1− p)eλb = e(p−1)z [p+ (1− p)ez] .

Let f(z) = (p− 1)z + log(p+ (1− p)ez). Then

f ′(z) = (p− 1) +
1− p

pe−z + 1− p
and f ′′(z) =

p(1− p)e−z

(pe−z + 1− p)2
≤ 1

4
,

so that f(0) = 0, f ′(0) = 0, by Taylor’s theorem we have f(z) ≤ 1
8
z2. Substitute z = λ(b−a)

for the result.
In the case that b = −a, we can give a much simpler proof: we have

E[eλU ] ≤ b

2b
e−λb +

b

2b
eλb =

∑

k∈2Z+

λkbk

k!
= 1 +

∑

k≥1

λ2kb2k

(2k)!

≤ 1 +
∑

k≥1

(

λb

2

)2
1

k!
= exp

(

λ2b2

2

)

.

♦

For sub-Gaussian random variables, it is very natural to use these tail bounds to give
uncertainty sets, or approximations to chance/uncertainty constraints. Indeed, expanding on
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Example 2, suppose that we have mean-zero random variables Ui and would like to guarantee
that for parameters x ∈ Rn and some parameter t,

Prob(UTx > t) ≤ ǫ.

That is, the probability of failing to satisfy the constraint that UTx ≤ t is at most ǫ. If the
Ui are σ

2
i -sub-Gaussian, then the standard Hoeffding bounds guarantee that

Prob(UTx > t) ≤ exp

(

− t2

2
∑n

i=1 σ
2
i x

2
i

)

as Uixi is mean-zero and satisfies logE eλUixi ≤ λ2x2
i σ

2
i

2
. In particular, if we replace t with

√

2 log 1
ǫ
‖diag(σ)x‖2, then

UTx ≤
√

2 log
1

ǫ
‖diag(σ)x‖2 with probability ≥ 1− ǫ.

That is, second order cone constraints arise naturally out of our probabilistic considerations.
If we were to directly guarantee that Ui ∈ Ui for each i and uncertainty sets Ui, we would
necessarilty choose substantially more conservative bounds, as in § 3.4.

A The S Lemma

The homogeneous S lemma is the following result: given matrices A,B ∈ Sn and assuming
there exists some x ∈ Rn such that xTAx > 0, we have

xTAx ≥ 0 implies xTBx ≥ 0 if and only if ∃ λ ≥ 0 s.t. B � λA. (18)

A proof of this fact is actually not too difficult. For one direction, suppose that B � λA
for some λ ≥ 0. Then it is clear that xTBx ≥ λxTAx ≥ 0 any time xTAx ≥ 0. The converse
is substantially more challenging, and is a consequence of semidefinite duality. We give an
argument using a simple randomization idea (cf. [BTGN09]) to prove this fact. Consider the
semidefinite program

minimize Tr(BX)

subject to Tr(AX) ≥ 0, X � 0, Tr(X) = 1.

Strong duality obtains for this problem, as it is strictly feasible (by assumption, we may take
X = xxT/ ‖x‖22 for the vector x such that xTAx > 0). Moreover, there exists an optimal
solution X⋆. As a consequence, writing the Lagrangian in variables X,Z � 0, λ ≥ 0, and
θ ∈ R, we have

L(X,Z, λ, θ) = Tr(BX)− λTr(AX)−Tr(ZX) + θ(Tr(X)− 1),
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and so the dual function

inf
X
L(X,Z, λ, θ) =

{

−∞ if B − λA− Z + θI 6= 0

−θ otherwise.

In particular, we see that if the optimal value Tr(BX⋆) = −θ⋆ ≥ 0, then at optimum, we
have B = λA+ Z − θ⋆I � λA, which proves the implication (18).

Let Ā = (X⋆)
1

2A(X⋆)
1

2 and B̄ = (X⋆)
1

2B(X⋆)
1

2 , and let Ā = UΛUT be the eigen-
decomposition of Ā. In addition, let Z ∈ {−1, 1}n be a mean-zero random vector of inde-
pendent signs. Then

(UZ)T Ā(UZ) = (UZ)TUΛUTUZ = ZTΛZ =
n
∑

i=1

Λii = Tr(Ā) = Tr(AX⋆) ≥ 0.

As a consequence, for any vector Z ∈ {−1, 1}n, we have by the implication xTAx ≥ 0 ⇒
xTBx ≥ 0 that (UZ)T B̄(UZ) ≥ 0. In particular, taking expectations,

0 ≤ E(UZ)T B̄UZ = ETr(ZTUT B̄UZ) = ETr(UT B̄UZZT )

= Tr(B̄UUT ) = Tr(B̄) = Tr(BX⋆),

where we have used that EZZT = I. We see that Tr(BX⋆) ≥ 0, giving the result.
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