
Primal-Dual Subgradient Method

• equality constrained problems

• inequality constrained problems
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Primal-dual subgradient method

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with variable x ∈ Rn, fi : R
n → R convex

• primal-dual subgradient method updates both primal and dual variables

• these converge to primal-dual optimal values
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Equality constrained problem

• convex equality constrained problem

minimize f(x)
subject to Ax = b

with variable x and optimal value p⋆

• we will work instead with (equivalent) augmented problem

minimize f(x) + (ρ/2)‖Ax− b‖22
subject to Ax = b

where ρ > 0
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Augmented Lagrangian and optimality conditions

• augmented Lagrangian is

L(x, ν) = f(x) + νT (Ax− b) + (ρ/2)‖Ax− b‖22

• (x, ν) primal-dual optimal if and only if

0 ∈ ∂xL(x, ν) = ∂f(x) +ATν + ρAT (Ax− b)

0 = −∇νL(x, ν) = b−Ax

• same as 0 ∈ T (x, ν), with z = (x, ν) and T (x, ν) =

[

∂xL(x, ν)
−∇νL(x, ν)

]

• T is a monotone operator (much more on this later)
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Primal-dual subgradient method

• primal-dual subgradient method is

z(k+1) = z(k) − αkT
(k)

where T (k) ∈ T (z(k)) and αk is step length

• more explicitly:

x(k+1) = x(k) − αk(g
(k) +ATν(k) + ρAT (Ax(k) − b))

ν(k+1) = ν(k) + αk(Ax(k) − b)

where g(k) ∈ ∂f(x(k))
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Convergence

with step size αk = γk/‖T
(k)‖2,

γk > 0,
∑

k

γk = ∞,
∑

k

γ2
k < ∞

we get convergence:

f(x(k)) → p⋆, Ax(k) − b → 0
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Inequality constrained problem

• convex inequality constrained problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

with variable x, optimal value p⋆

• (equivalent) augmented problem

minimize f0(x) + (ρ/2)‖F (x)‖22
subject to F (x) � 0

where F (x) = (f1(x)+, . . . , fm(x)+), ρ > 0

EE364b, Stanford University 6



Augmented Lagrangian and optimality conditions

• augmented Lagrangian is

L(x, λ) = f0(x) + λTF (x) + (ρ/2)‖F (x)‖22

• (x, λ) primal-dual optimal if and only if

0 ∈ ∂xL(x, λ) = ∂f0(x) +

m
∑

i=1

(λi + ρfi(x)+)∂fi(x)+

0 = −∇λL(x, λ) = −F (x)
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Primal-dual subgradient method

• define z = (x, ν) and

T (x, λ) =

[

∂xL(x, λ)
−∇λL(x, λ)

]

(T is the KKT operator for the problem, and is monotone)

• primal-dual subgradient method is

z(k+1) = z(k) − αkT
(k)

where T (k) ∈ T (z(k)) and αk is step length
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• more explicitly:

x(k+1) = x(k) − αk

(

g
(k)
0 +

m
∑

i=1

(λ
(k)
i + ρfi(x

(k))+)g
(k)
i

)

λ
(k+1)
i = λ

(k)
i + αkfi(x

(k))+, i = 1, . . . ,m

where g
(k)
0 ∈ ∂f0(x

(k)), g
(k)
i ∈ ∂fi(x

(k))+, i = 1, . . . ,m

• note that λ
(k)
i can only increase with k
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Convergence

with step size αk = γk/‖T
(k)‖2,

γk > 0,
∑

k

γk = ∞,
∑

k

γ2
k < ∞

we get convergence:

f0(x
(k)) → p⋆, fi(x

(k))+ → 0, i = 1, . . . ,m
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Example: Inequality constrained LP

minimize cTx
subject to Ax � b

primal-dual subgradient update is

x(k+1) = x(k) − αk

(

c+ATM (k)(λ(k) + ρ(Ax(k) − b)+)
)

λ(k+1) = λ(k) + αk(Ax(k) − b)+

where M (k) is a diagonal matrix

M
(k)
ii =

{

1 aTi x
(k) > bi

0 aTi x
(k) ≤ bi
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problem instance with n = 20, m = 200, p⋆ ≈ −3.4
step size αk = 1/(k‖T (k)‖2)
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