9. Numerical linear algebra background

- matrix structure and algorithm complexity
- solving linear equations with factored matrices
- LU, Cholesky, LDL^T factorization
- block elimination and the matrix inversion lemma
- solving underdetermined equations

Matrix structure and algorithm complexity

cost (execution time) of solving Ax = b with $A \in \mathbf{R}^{n \times n}$

- for general methods, grows as n^3
- less if A is structured (banded, sparse, Toeplitz, ...)

flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity

vector-vector operations $(x, y \in \mathbf{R}^n)$

- inner product $x^T y$: 2n 1 flops (or 2n if n is large)
- sum x + y, scalar multiplication αx : n flops

matrix-vector product y = Ax with $A \in \mathbf{R}^{m \times n}$

- m(2n-1) flops (or 2mn if n large)
- 2N if A is sparse with N nonzero elements
- 2p(n+m) if A is given as $A = UV^T$, $U \in \mathbf{R}^{m \times p}$, $V \in \mathbf{R}^{n \times p}$

matrix-matrix product C = AB with $A \in \mathbf{R}^{m \times n}$, $B \in \mathbf{R}^{n \times p}$

- mp(2n-1) flops (or 2mnp if n large)
- less if A and/or B are sparse
- $(1/2)m(m+1)(2n-1) \approx m^2n$ if m = p and C symmetric

Linear equations that are easy to solve

diagonal matrices $(a_{ij} = 0 \text{ if } i \neq j)$: n flops

$$x = A^{-1}b = (b_1/a_{11}, \dots, b_n/a_{nn})$$

lower triangular $(a_{ij} = 0 \text{ if } j > i)$: n^2 flops

$$x_{1} := b_{1}/a_{11}$$

$$x_{2} := (b_{2} - a_{21}x_{1})/a_{22}$$

$$x_{3} := (b_{3} - a_{31}x_{1} - a_{32}x_{2})/a_{33}$$

$$\vdots$$

$$x_{n} := (b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \dots - a_{n,n-1}x_{n-1})/a_{nn}$$

called forward substitution

upper triangular ($a_{ij} = 0$ if j < i): n^2 flops via backward substitution

orthogonal matrices: $A^{-1} = A^T$

- $2n^2$ flops to compute $x = A^T b$ for general A
- less with structure, e.g., if $A = I 2uu^T$ with $||u||_2 = 1$, we can compute $x = A^T b = b 2(u^T b)u$ in 4n flops

permutation matrices:

$$a_{ij} = \left\{ egin{array}{cc} 1 & j = \pi_i \\ 0 & {
m otherwise} \end{array}
ight.$$

where $\pi = (\pi_1, \pi_2, \dots, \pi_n)$ is a permutation of $(1, 2, \dots, n)$

- interpretation: $Ax = (x_{\pi_1}, \ldots, x_{\pi_n})$
- satisfies $A^{-1} = A^T$, hence cost of solving Ax = b is 0 flops

example:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad A^{-1} = A^T = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

The factor-solve method for solving Ax = b

• factor A as a product of simple matrices (usually 2 or 3):

$$A = A_1 A_2 \cdots A_k$$

 $(A_i \text{ diagonal, upper or lower triangular, etc})$

• compute $x = A^{-1}b = A_k^{-1} \cdots A_2^{-1}A_1^{-1}b$ by solving k 'easy' equations

$$A_1 x_1 = b, \qquad A_2 x_2 = x_1, \qquad \dots, \qquad A_k x = x_{k-1}$$

cost of factorization step usually dominates cost of solve step

equations with multiple righthand sides

$$Ax_1 = b_1, \qquad Ax_2 = b_2, \qquad \dots, \qquad Ax_m = b_m$$

cost: one factorization plus m solves

LU factorization

every nonsingular matrix \boldsymbol{A} can be factored as

A = PLU

with P a permutation matrix, L lower triangular, U upper triangular cost: $(2/3)n^3$ flops

Solving linear equations by LU factorization.

given a set of linear equations Ax = b, with A nonsingular.

- 1. LU factorization. Factor A as A = PLU ((2/3) n^3 flops).
- 2. *Permutation.* Solve $Pz_1 = b$ (0 flops).
- 3. Forward substitution. Solve $Lz_2 = z_1$ (n^2 flops).
- 4. Backward substitution. Solve $Ux = z_2$ (n^2 flops).

cost: $(2/3)n^3 + 2n^2 \approx (2/3)n^3$ for large n

sparse LU factorization

$$A = P_1 L U P_2$$

- adding permutation matrix P_2 offers possibility of sparser L, U (hence, cheaper factor and solve steps)
- P_1 and P_2 chosen (heuristically) to yield sparse L, U
- choice of P_1 and P_2 depends on sparsity pattern and values of A
- cost is usually much less than $(2/3)n^3$; exact value depends in a complicated way on n, number of zeros in A, sparsity pattern

Cholesky factorization

every positive definite A can be factored as

 $A = LL^T$

with L lower triangular

cost: $(1/3)n^3$ flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Ax = b, with $A \in \mathbf{S}_{++}^n$.

- 1. Cholesky factorization. Factor A as $A = LL^T$ ((1/3) n^3 flops).
- 2. Forward substitution. Solve $Lz_1 = b$ (n^2 flops).
- 3. Backward substitution. Solve $L^T x = z_1$ (n^2 flops).

cost: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n

sparse Cholesky factorization

$$A = PLL^T P^T$$

- adding permutation matrix P offers possibility of sparser L
- P chosen (heuristically) to yield sparse L
- choice of P only depends on sparsity pattern of A (unlike sparse LU)
- cost is usually much less than $(1/3)n^3$; exact value depends in a complicated way on n, number of zeros in A, sparsity pattern

$\mathsf{L}\mathsf{D}\mathsf{L}^\mathsf{T}$ factorization

every nonsingular symmetric matrix \boldsymbol{A} can be factored as

 $A = PLDL^T P^T$

with P a permutation matrix, L lower triangular, D block diagonal with 1×1 or 2×2 diagonal blocks

cost: $(1/3)n^3$

- cost of solving symmetric sets of linear equations by LDL^T factorization: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n
- for sparse A, can choose P to yield sparse L; cost $\ll (1/3)n^3$

Equations with structured sub-blocks

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
(1)

- variables $x_1 \in \mathbf{R}^{n_1}$, $x_2 \in \mathbf{R}^{n_2}$; blocks $A_{ij} \in \mathbf{R}^{n_i \times n_j}$
- if A₁₁ is nonsingular, can eliminate x₁: x₁ = A₁₁⁻¹(b₁ − A₁₂x₂); to compute x₂, solve

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1$$

Solving linear equations by block elimination.

given a nonsingular set of linear equations (1), with A_{11} nonsingular.

- 1. Form $A_{11}^{-1}A_{12}$ and $A_{11}^{-1}b_1$.
- 2. Form $S = A_{22} A_{21}A_{11}^{-1}A_{12}$ and $\tilde{b} = b_2 A_{21}A_{11}^{-1}b_1$.
- 3. Determine x_2 by solving $Sx_2 = \tilde{b}$.
- 4. Determine x_1 by solving $A_{11}x_1 = b_1 A_{12}x_2$.

dominant terms in flop count

- step 1: $f + n_2 s$ (f is cost of factoring A_{11} ; s is cost of solve step)
- step 2: $2n_2^2n_1$ (cost dominated by product of A_{21} and $A_{11}^{-1}A_{12}$)
- step 3: $(2/3)n_2^3$

total: $f + n_2 s + 2n_2^2 n_1 + (2/3)n_2^3$

examples

• general A_{11} $(f = (2/3)n_1^3$, $s = 2n_1^2$): no gain over standard method

$$\#\mathsf{flops} = (2/3)n_1^3 + 2n_1^2n_2 + 2n_2^2n_1 + (2/3)n_2^3 = (2/3)(n_1 + n_2)^3$$

• block elimination is useful for structured A_{11} $(f \ll n_1^3)$ for example, diagonal $(f = 0, s = n_1)$: #flops $\approx 2n_2^2n_1 + (2/3)n_2^3$

Structured matrix plus low rank term

(A + BC)x = b

•
$$A \in \mathbf{R}^{n \times n}$$
, $B \in \mathbf{R}^{n \times p}$, $C \in \mathbf{R}^{p \times n}$

• assume A has structure (Ax = b easy to solve)

first write as

\overline{A}	B]	$\begin{bmatrix} x \end{bmatrix}$		$\begin{bmatrix} b \end{bmatrix}$
C	-I	$\left\lfloor y ight floor$	—	

now apply block elimination: solve

$$(I + CA^{-1}B)y = CA^{-1}b,$$

then solve Ax = b - By

this proves the matrix inversion lemma: if A and A + BC nonsingular,

$$(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}$$

example: A diagonal, B, C dense

- method 1: form D = A + BC, then solve Dx = bcost: $(2/3)n^3 + 2pn^2$
- method 2 (via matrix inversion lemma): solve

$$(I + CA^{-1}B)y = CA^{-1}b, (2)$$

then compute $x = A^{-1}b - A^{-1}By$

total cost is dominated by (2): $2p^2n + (2/3)p^3$ (*i.e.*, linear in n)

Underdetermined linear equations

if
$$A \in \mathbf{R}^{p \times n}$$
 with $p < n$, $\operatorname{rank} A = p$,

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}\$$

- \hat{x} is (any) particular solution
- columns of $F \in \mathbf{R}^{n \times (n-p)}$ span nullspace of A
- there exist several numerical methods for computing F (QR factorization, rectangular LU factorization, . . .)