9. Numerical linear algebra background

- matrix structure and algorithm complexity
- solving linear equations with factored matrices
- LU, Cholesky, LDLᵀ factorization
- block elimination and the matrix inversion lemma
- solving underdetermined equations
Matrix structure and algorithm complexity

cost (execution time) of solving $Ax = b$ with $A \in \mathbb{R}^{n \times n}$

- for general methods, grows as n^3
- less if A is structured (banded, sparse, Toeplitz, . . .

flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity
vector-vector operations \((x, y \in \mathbb{R}^n)\)

- inner product \(x^T y\): \(2n - 1\) flops (or \(2n\) if \(n\) is large)
- sum \(x + y\), scalar multiplication \(\alpha x\): \(n\) flops

matrix-vector product \(y = Ax\) with \(A \in \mathbb{R}^{m \times n}\)

- \(m(2n - 1)\) flops (or \(2mn\) if \(n\) large)
- \(2N\) if \(A\) is sparse with \(N\) nonzero elements
- \(2p(n + m)\) if \(A\) is given as \(A = UV^T\), \(U \in \mathbb{R}^{m \times p}\), \(V \in \mathbb{R}^{n \times p}\)

matrix-matrix product \(C = AB\) with \(A \in \mathbb{R}^{m \times n}\), \(B \in \mathbb{R}^{n \times p}\)

- \(mp(2n - 1)\) flops (or \(2mnp\) if \(n\) large)
- less if \(A\) and/or \(B\) are sparse
- \((1/2)m(m + 1)(2n - 1) \approx m^2n\) if \(m = p\) and \(C\) symmetric
Linear equations that are easy to solve

diagonal matrices \((a_{ij} = 0 \text{ if } i \neq j)\): \(n\) flops

\[
x = A^{-1}b = (b_1/a_{11}, \ldots, b_n/a_{nn})
\]

lower triangular \((a_{ij} = 0 \text{ if } j > i)\): \(n^2\) flops

\[
x_1 := b_1/a_{11}
\]

\[
x_2 := (b_2 - a_{21}x_1)/a_{22}
\]

\[
x_3 := (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33}
\]

\[\vdots\]

\[
x_n := (b_n - a_{n1}x_1 - a_{n2}x_2 - \cdots - a_{n,n-1}x_{n-1})/a_{nn}
\]

called forward substitution

upper triangular \((a_{ij} = 0 \text{ if } j < i)\): \(n^2\) flops via backward substitution
orthogonal matrices: $A^{-1} = A^T$

- $2n^2$ flops to compute $x = A^Tb$ for general A
- less with structure, e.g., if $A = I - 2uu^T$ with $\|u\|_2 = 1$, we can compute $x = A^Tb = b - 2(u^Tb)u$ in $4n$ flops

permutation matrices:

$$a_{ij} = \begin{cases} 1 & j = \pi_i \\ 0 & \text{otherwise} \end{cases}$$

where $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$ is a permutation of $(1, 2, \ldots, n)$

- interpretation: $Ax = (x_{\pi_1}, \ldots, x_{\pi_n})$
- satisfies $A^{-1} = A^T$, hence cost of solving $Ax = b$ is 0 flops

example:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad A^{-1} = A^T = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
The factor-solve method for solving $Ax = b$

- factor A as a product of simple matrices (usually 2 or 3):
 \[A = A_1 A_2 \cdots A_k \]
 (A_i diagonal, upper or lower triangular, etc)

- compute $x = A^{-1}b = A_k^{-1} \cdots A_2^{-1} A_1^{-1}b$ by solving k ‘easy’ equations
 \[A_1 x_1 = b, \quad A_2 x_2 = x_1, \quad \ldots, \quad A_k x = x_{k-1} \]

 cost of factorization step usually dominates cost of solve step

 equations with multiple righthand sides

 \[Ax_1 = b_1, \quad Ax_2 = b_2, \quad \ldots, \quad Ax_m = b_m \]

 cost: one factorization plus m solves

Numerical linear algebra background
LU factorization

every nonsingular matrix A can be factored as

$$A = PLU$$

with P a permutation matrix, L lower triangular, U upper triangular

cost: $(2/3)n^3$ flops

Solving linear equations by LU factorization.

given a set of linear equations $Ax = b$, with A nonsingular.

1. LU factorization. Factor A as $A = PLU$ ($(2/3)n^3$ flops).
2. Permutation. Solve $Pz_1 = b$ (0 flops).
3. Forward substitution. Solve $Lz_2 = z_1$ (n^2 flops).
4. Backward substitution. Solve $Ux = z_2$ (n^2 flops).

cost: $(2/3)n^3 + 2n^2 \approx (2/3)n^3$ for large n
sparse LU factorization

\[A = P_1LU P_2 \]

• adding permutation matrix \(P_2 \) offers possibility of sparser \(L, U \) (hence, cheaper factor and solve steps)

• \(P_1 \) and \(P_2 \) chosen (heuristically) to yield sparse \(L, U \)

• choice of \(P_1 \) and \(P_2 \) depends on sparsity pattern and values of \(A \)

• cost is usually much less than \((2/3)n^3\); exact value depends in a complicated way on \(n \), number of zeros in \(A \), sparsity pattern
every positive definite A can be factored as

$$A = LL^T$$

with L lower triangular

cost: $(1/3)n^3$ flops

Solving linear equations by Cholesky factorization.

given a set of linear equations $Ax = b$, with $A \in S_{++}^n$.

1. *Cholesky factorization.* Factor A as $A = LL^T$ ($(1/3)n^3$ flops).
2. *Forward substitution.* Solve $Lz_1 = b$ (n^2 flops).
3. *Backward substitution.* Solve $L^Tx = z_1$ (n^2 flops).

cost: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n
sparse Cholesky factorization

\[A = PLL^T P^T \]

- adding permutation matrix \(P \) offers possibility of sparser \(L \)
- \(P \) chosen (heuristically) to yield sparse \(L \)
- choice of \(P \) only depends on sparsity pattern of \(A \) (unlike sparse LU)
- cost is usually much less than \((1/3)n^3\); exact value depends in a complicated way on \(n \), number of zeros in \(A \), sparsity pattern
LDL^T factorization

every nonsingular symmetric matrix A can be factored as

$$A = PLDL^TP^T$$

with P a permutation matrix, L lower triangular, D block diagonal with 1×1 or 2×2 diagonal blocks

cost: $(1/3)n^3$

- cost of solving symmetric sets of linear equations by LDL^T factorization:
 $$(1/3)n^3 + 2n^2 \approx (1/3)n^3$$ for large n

- for sparse A, can choose P to yield sparse L; cost $\ll (1/3)n^3$
Equations with structured sub-blocks

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\] (1)

- variables \(x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2} \); blocks \(A_{ij} \in \mathbb{R}^{n_i \times n_j} \)
- if \(A_{11} \) is nonsingular, can eliminate \(x_1 \): \(x_1 = A_{11}^{-1}(b_1 - A_{12}x_2) \);
 to compute \(x_2 \), solve
 \[
 (A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1
 \]

Solving linear equations by block elimination.

given a nonsingular set of linear equations (1), with \(A_{11} \) nonsingular.

1. Form \(A_{11}^{-1}A_{12} \) and \(A_{11}^{-1}b_1 \).
2. Form \(S = A_{22} - A_{21}A_{11}^{-1}A_{12} \) and \(\tilde{b} = b_2 - A_{21}A_{11}^{-1}b_1 \).
3. Determine \(x_2 \) by solving \(Sx_2 = \tilde{b} \).
4. Determine \(x_1 \) by solving \(A_{11}x_1 = b_1 - A_{12}x_2 \).
dominant terms in flop count

- step 1: $f + n_2s$ (f is cost of factoring A_{11}; s is cost of solve step)
- step 2: $2n_2^2n_1$ (cost dominated by product of A_{21} and $A_{11}^{-1}A_{12}$)
- step 3: $(2/3)n_2^3$

total: $f + n_2s + 2n_2^2n_1 + (2/3)n_2^3$

examples

- general A_{11} ($f = (2/3)n_1^3$, $s = 2n_1^2$): no gain over standard method

 $$\#\text{flops} = (2/3)n_1^3 + 2n_1^2n_2 + 2n_2^2n_1 + (2/3)n_2^3 = (2/3)(n_1 + n_2)^3$$

- block elimination is useful for structured A_{11} ($f \ll n_1^3$)

 for example, diagonal ($f = 0$, $s = n_1$): $\#\text{flops} \approx 2n_2^2n_1 + (2/3)n_2^3$
Structured matrix plus low rank term

\[(A + BC')x = b\]

- \(A \in \mathbb{R}^{n \times n}\), \(B \in \mathbb{R}^{n \times p}\), \(C \in \mathbb{R}^{p \times n}\)
- assume \(A\) has structure \((Ax = b\) easy to solve\)

first write as

\[
\begin{bmatrix}
A & B \\
C & -I
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
b \\
0
\end{bmatrix}
\]

now apply block elimination: solve

\[(I + CA^{-1}B)y = CA^{-1}b,\]

then solve \(Ax = b - By\)

this proves the **matrix inversion lemma**: if \(A\) and \(A + BC\) nonsingular,

\[
(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}
\]
example: \(A \) diagonal, \(B, C \) dense

- method 1: form \(D = A + BC \), then solve \(Dx = b \)

 cost: \((2/3)n^3 + 2pn^2 \)

- method 2 (via matrix inversion lemma): solve

 \[
 (I + CA^{-1}B)y = CA^{-1}b, \tag{2}
 \]

 then compute \(x = A^{-1}b - A^{-1}By \)

 total cost is dominated by (2): \(2p^2n + (2/3)p^3 \) (i.e., linear in \(n \))
Underdetermined linear equations

if \(A \in \mathbb{R}^{p \times n} \) with \(p < n \), \(\text{rank} \ A = p \),

\[
\{ x \mid Ax = b \} = \{ Fz + \hat{x} \mid z \in \mathbb{R}^{n-p} \}
\]

- \(\hat{x} \) is (any) particular solution
- columns of \(F \in \mathbb{R}^{n \times (n-p)} \) span nullspace of \(A \)
- there exist several numerical methods for computing \(F \)
 (QR factorization, rectangular LU factorization, . . .)