
Numerical Linear Algebra Software

(based on slides written by Michael Grant)

• BLAS, ATLAS

• LAPACK

• sparse matrices

Prof. S. Boyd, EE364b, Stanford University

Numerical linear algebra in optimization

most memory usage and computation time in optimization methods is
spent on numerical linear algebra, e.g.,

• constructing sets of linear equations (e.g., Newton or KKT systems)

– matrix-matrix products, matrix-vector products, . . .

• and solving them

– factoring, forward and backward substitution, . . .

. . . so knowing about numerical linear algebra is a good thing

Prof. S. Boyd, EE364b, Stanford University 1

Why not just use Matlab?

• Matlab (Octave, . . .) is OK for prototyping an algorithm

• but you’ll need to use a real language (e.g., C, C++, Python) when

– your problem is very large, or has special structure
– speed is critical (e.g., real-time)
– your algorithm is embedded in a larger system or tool
– you want to avoid proprietary software

• in any case, the numerical linear algebra in Matlab is done using
standard free libraries

Prof. S. Boyd, EE364b, Stanford University 2

How to write numerical linear algebra software

DON’T!

whenever possible, rely on existing, mature software libraries

• you can focus on the higher-level algorithm

• your code will be more portable, less buggy, and will run
faster—sometimes much faster

Prof. S. Boyd, EE364b, Stanford University 3

Netlib

the grandfather of all numerical linear algebra web sites

http://www.netlib.org

• maintained by University of Tennessee, Oak Ridge National Laboratory,
and colleagues worldwide

• most of the code is public domain or freely licensed

• much written in FORTRAN 77 (gasp!)

Prof. S. Boyd, EE364b, Stanford University 4

Basic Linear Algebra Subroutines (BLAS)

written by people who had the foresight to understand the future benefits
of a standard suite of “kernel” routines for linear algebra.

created and organized in three levels:

• Level 1, 1973-1977: O(n) vector operations: addition, scaling, dot
products, norms

• Level 2, 1984-1986: O(n2) matrix-vector operations: matrix-vector
products, triangular matrix-vector solves, rank-1 and symmetric rank-2
updates

• Level 3, 1987-1990: O(n3) matrix-matrix operations: matrix-matrix
products, triangular matrix solves, low-rank updates

Prof. S. Boyd, EE364b, Stanford University 5

BLAS operations

Level 1 addition/scaling αx, αx + y
dot products, norms xTy, ‖x‖2, ‖x‖1

Level 2 matrix/vector products αAx + βy, αATx + βy
rank 1 updates A + αxyT , A + αxxT

rank 2 updates A + αxyT + αyxT

triangular solves αT−1x, αT−Tx

Level 3 matrix/matrix products αAB + βC, αABT + βC
αATB + βC, αATBT + βC

rank-k updates αAAT + βC, αATA + βC
rank-2k updates αATB + αBTA + βC
triangular solves αT−1C, αT−TC

Prof. S. Boyd, EE364b, Stanford University 6

Level 1 BLAS naming convention

BLAS routines have a Fortran-inspired naming convention:

cblas_ X XXXX

prefix data type operation

data types:

s single precision real d double precision real
c single precision complex z double precision complex

operations:

axpy y ← αx + y dot r ← xTy

nrm2 r ← ‖x‖2 =
√

xTx asum r ← ‖x‖1 =
∑

i |xi|
example:

cblas_ddot double precision real dot product

Prof. S. Boyd, EE364b, Stanford University 7

BLAS naming convention: Level 2/3

cblas_ X XX XXX

prefix data type structure operation
matrix structure:

tr triangular tp packed triangular tb banded triangular
sy symmetric sp packed symmetric sb banded symmetric
hy Hermitian hp packed Hermitian hn banded Hermitian
ge general gb banded general

operations:
mv y ← αAx + βy sv x← A−1x (triangular only)
r A← A + xxT r2 A← A + xyT + yxT

mm C ← αAB + βC r2k C ← αABT + αBAT + βC

examples:
cblas_dtrmv double precision real triangular matrix-vector product
cblas_dsyr2k double precision real symmetric rank-2k update

Prof. S. Boyd, EE364b, Stanford University 8

Using BLAS efficiently

always choose a higher-level BLAS routine over multiple calls to a
lower-level BLAS routine

A← A +
k

∑

i=1

xiy
T
i , A ∈ Rm×n, xi ∈ Rm, yi ∈ Rn

two choices: k separate calls to the Level 2 routine cblas_dger

A← A + x1y
T
1
, . . . A← A + xky

T
k

or a single call to the Level 3 routine cblas_dgemm

A← A + XY T , X = [x1 · · ·xk] , Y = [y1 · · · yk]

the Level 3 choice will perform much better

Prof. S. Boyd, EE364b, Stanford University 9

Is BLAS necessary?

why use BLAS when writing your own routines is so easy?

A← A + XY T , A ∈ Rm×n, X ∈ Rm×p, Y ∈ Rn×p

Aij ← Aij +

p
∑

k=1

XikYjk

void matmultadd(int m, int n, int p, double* A,

const double* X, const double* Y) {

int i, j, k;

for (i = 0 ; i < m ; ++i)

for (j = 0 ; j < n ; ++j)

for (k = 0 ; k < p ; ++k)

A[i + j * n] += X[i + k * p] * Y[j + k * p];

}

Prof. S. Boyd, EE364b, Stanford University 10

Is BLAS necessary?

• tuned/optimized BLAS will run faster than your home-brew version —
often 10× or more

• BLAS is tuned by selecting block sizes that fit well with your processor,
cache sizes

• ATLAS (automatically tuned linear algebra software)

http://math-atlas.sourceforge.net

uses automated code generation and testing methods to generate an
optimized BLAS library for a specific computer

Prof. S. Boyd, EE364b, Stanford University 11

Improving performance through blocking

blocking is used to improve the performance of matrix/vector and
matrix/matrix multiplications, Cholesky factorizations, etc.

A + XY T ←
[

A11 A12

A21 A22

]

+

[

X11

X21

]

+
[

Y T
11

Y T
21

]

A11← A11 + X11Y
T
11

, A12← A12 + X11Y
T
21

,

A21← A21 + X21Y
T
11

, A22← A22 + X21Y
T
21

optimal block size, and order of computations, depends on details of
processor architecture, cache, memory

Prof. S. Boyd, EE364b, Stanford University 12

Linear Algebra PACKage (LAPACK)

LAPACK contains subroutines for solving linear systems and performing
common matrix decompositions and factorizations

• first release: February 1992; latest version (3.0): May 2000

• supercedes predecessors EISPACK and LINPACK

• supports same data types (single/double precision, real/complex) and
matrix structure types (symmetric, banded, . . .) as BLAS

• uses BLAS for internal computations

• routines divided into three categories: auxiliary routines, computational

routines, and driver routines

Prof. S. Boyd, EE364b, Stanford University 13

LAPACK computational routines

computational routines perform single, specific tasks

• factorizations: LU , LLT/LLH, LDLT/LDLH, QR, LQ, QRZ,
generalized QR and RQ

• symmetric/Hermitian and nonsymmetric eigenvalue decompositions

• singular value decompositions

• generalized eigenvalue and singular value decompositions

Prof. S. Boyd, EE364b, Stanford University 14

LAPACK driver routines
driver routines call a sequence of computational routines to solve standard
linear algebra problems, such as

• linear equations: AX = B

• linear least squares: minimizex ‖b−Ax‖2

• linear least-norm:
minimizey ‖y‖2
subject to d = By

• generalized linear least squares problems:

minimizex ‖c−Ax‖2
subject to Bx = d

minimizey ‖y‖2
subject to d = Ax + By

Prof. S. Boyd, EE364b, Stanford University 15

LAPACK example

solve KKT system
[

H AT

A 0

] [

x
y

]

=

[

a
b

]

x ∈ Rn, v ∈ Rm, H = HT ≻ 0, m < n
option 1 : driver routine dsysv uses computational routine dsytrf to
compute permuted LDLT factorization

[

H A
A 0

]

→ PLDLTP T

and performs remaining computations to compute solution

[

x
y

]

= P TL−1D−1L−TP

[

a
b

]

Prof. S. Boyd, EE364b, Stanford University 16

option 2 : block elimination

y = (AH−1AT)−1(AH−1a− b), x = H−1a−H−1ATy

• first we solve the system H[Z w] = [AT a] using driver routine dspsv

• then we construct and solve (AZ)y = Aw − b using dspsv again

• x = w − Zy

using this approach we could exploit structure in H, e.g., banded

Prof. S. Boyd, EE364b, Stanford University 17

What about other languages?

BLAS and LAPACK routines can be called from C, C++, Java, Python,
. . .

an alternative is to use a “native” library, such as

• C++: Boost uBlas, Matrix Template Library

• Python: NumPy/SciPy, CVXOPT

• Java: JAMA

Prof. S. Boyd, EE364b, Stanford University 18

Sparse matrices

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 505

• A ∈ Rm×n is sparse if it has “enough zeros that it pays to take
advantage of them” (J. Wilkinson)

• usually this means nnz, number of elements known to be nonzero, is
small: nnz≪ mn

Prof. S. Boyd, EE364b, Stanford University 19

Sparse matrices

sparse matrices can save memory and time

• storing A ∈ Rm×n using double precision numbers

– dense: 8mn bytes
– sparse: ≈ 16nnz bytes or less, depending on storage format

• operation y ← y + Ax:

– dense: mn flops
– sparse: nnz flops

• operation x← T−1x, T ∈ Rn×n triangular, nonsingular:

– dense: n2/2 flops
– sparse: nnz flops

Prof. S. Boyd, EE364b, Stanford University 20

Representing sparse matrices

• several methods used

• simplest (but typically not used) is to store the data as list of (i, j, Aij)
triples

• column compressed format: an array of pairs (Aij, i), and an array of
pointers into this array that indicate the start of a new column

• for high end work, exotic data structures are used

• sadly, no universal standard (yet)

Prof. S. Boyd, EE364b, Stanford University 21

Sparse BLAS?

sadly there is not (yet) a standard sparse matrix BLAS library

• the “official” sparse BLAS

http://www.netlib.org/blas/blast-forum

http://math.nist.gov/spblas

• C++: Boost uBlas, Matrix Template Library, SparseLib++

• Python: SciPy, PySparse, CVXOPT

Prof. S. Boyd, EE364b, Stanford University 22

Sparse factorizations

libraries for factoring/solving systems with sparse matrices

• most comprehensive: SuiteSparse (Tim Davis)

http://www.cise.ufl.edu/research/sparse/SuiteSparse

• others include SuperLU, TAUCS, SPOOLES

• typically include

– A = PLLTP T Cholesky
– A = PLDLTP T for symmetric indefinite systems
– A = P1LUPT

2
for general (nonsymmetric) matrices

P , P1, P2 are permutations or orderings

Prof. S. Boyd, EE364b, Stanford University 23

Sparse orderings

sparse orderings can have a dramatic effect on the sparsity of a
factorization

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 148
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 1275
0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 99

• left: spy diagram of original NW arrow matrix

• center: spy diagram of Cholesky factor with no permutation (P = I)

• right: spy diagram of Cholesky factor with the best permutation
(permute 1→ n)

Prof. S. Boyd, EE364b, Stanford University 24

Sparse orderings

• general problem of choosing the ordering that produces the sparsest
factorization is hard

• but, several simple heuristics are very effective

• more exotic ordering methods, e.g., nested disection, can work very well

Prof. S. Boyd, EE364b, Stanford University 25

Symbolic factorization

• for Cholesky factorization, the ordering can be chosen based only on the
sparsity pattern of A, and not its numerical values

• factorization can be divided into two stages: symbolic factorization and
numerical factorization

– when solving multiple linear systems with identical sparsity patterns,
symbolic factorization can be computed just once

– more effort can go into selecting an ordering, since it will be
amortized across multiple numerical factorizations

• ordering for LDLT factorization usually has to be done on the fly, i.e.,
based on the data

Prof. S. Boyd, EE364b, Stanford University 26

Other methods

we list some other areas in numerical linear algebra that have received
significant attention:

• iterative methods for sparse and structured linear systems

• parallel and distributed methods (MPI)

• fast linear operators: fast Fourier transforms (FFTs), convolutions,
state-space linear system simulations

there is considerable existing research, and accompanying public domain
(or freely licensed) code

Prof. S. Boyd, EE364b, Stanford University 27

