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Unconstrained Differentiable Convex Optimization

min, f(x)

e f(x) strongly convex and differentiable

e If(x) ={V[f(z)}

e subgradient descent = gradient descent
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Gradient Descent for Strongly Convex Functions
e recall strong convexity

A convex function f is called strongly convex if there exists two positive
constants _ < B4 such that

B-I 2 V3f(x) X 841

for every x in the domain of f

e Equivalent to
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Gradient Descent for Strongly Convex Functions

Tip1 = T — eV [ ()

e Suppose that f is strongly convex with parameters 5_, 54
define f* := min, f(x)
Convergence result: Using constant step-size u; = i we have

Flaes) — 17 < (1— g—_)(f(fct) )
+

recursively applying we get

o flar) = f* < (1=52)%(f(wo) = f*)
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Gradient Descent for Strongly Convex Functions

e linear convergence

e rate depends on the curvature

Flaw) — f* < (1— g—;)k(f(flfo) )

e minimizing f(Ax) where A € R"*9 via Gradient Descent takes

O(rndlog(1)) operations where x = g—f
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Gradient Descent with Momentum (Heavy Ball Method)
for Strongly Convex Functions

® Ty =x¢ — puV f(xe) + Bz — 24-1)

step-size parameter [ = ::
(\/ B+++/B8-)?

e momentum parameter 3 = max (|1 — \/pB_], |1 — v/ N5+|)2

e minimizing f(Ax) where A € R™"*4 via Gradient Descent with

Momentum takes O(1/knd log(%)) where k = g—f
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Newton’s Method

e Suppose f is twice differentiable, and consider a second order Taylor
approximation at a point x;

1

fy) = flae) + V)" (y — 20) + A )V (2")(y — o)

e minimizing the approximation yields x;11 = x; — (V2f(x))_1 Vf(x)

e Damped Newton updates: x;11 = x¢+ — tA; where
AVIEES (VQf(x))_l V f(x), where t is a step-size parameter

e Hessian of f(Ax) where A € R™*% takes O(nd?) operations to

calculate and O(d?) to invert. Alternatively, we can factorize in O(nd?)
time (QR, Cholesky, SVD)
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Choosing step-sizes: backtracking (Armijo) line search

given a descent direction Az for f at x € dom f, a € (0,0.5), 8 € (0,1).
t.= 1.
while f(z + tAz) > f(z) + atVf(z)T Az, t:= ft.
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Newton’s Method with Line Search

given a starting point z € dom f, tolerance ¢ > 0.

repeat
1. Compute the Newton step and decrement.

Azn = =V f(z) 'V f(z); N :=Vf(2)' Vf(2)" Vf(2).
2. Stopping criterion. quit if A\*/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tAxnt.
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Newton’s Method for Strongly Convex Functions

e Strong convexity with parameters 5_, 84
e Lipschitz continuity of the Hessian
IV2f(z) = V2F(y)ll2 < Lz — yl3
for some constant L > 0

e Basic convergence result: The number of iterations for ¢ approximate
solution in objective value is bounded by

f(xo) — f*
B_/B3

where ¢g = 232 /L2. Computational complexity: O((nd? + nd)T)

T := constant X + log, log, (60)

€
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Affine Invariance of Newton’s Method
e The previous analysis can be improved

e The key insight is that Newton's Method is invariant under linear
transformations

e Newton's Method for f(x) is x4 = x4 — (sz(:c))_l Vf(x)

e Consider a linear invertible transformation y = Az and
g(y) = f(A~'y). Then Newton’s Method for g(y) is given by

verr = yi — (V29(y)) " Valye)
= Az, — (A7 IV f(2)AH AV f(2)
= ACIJt — szf(l't)_1Vf<CCt> = AiEH_l
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Self-concordant Functions in R

e A function f : R — R is self-concordant when f is convex and

f’”(ZI}) < Qf//(ib')g/Q

for all x in the domain of f.
e Examples: linear and quadratic functions, negative logarithm

e One can use a constant k other than 2 in the definition. The number 2
is used in the definition so that —log(x) is self-concordant
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Self-concordant Functions in R¢

o A function f : RY — R is self-concordant when it is self-concordant
along every line, i.e.,

(i) f is convex
(i) g(t) := f(x + tv) is self-concordant for all = in the domain of f and
all v
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Self-concordant Functions in R
e Scaling with a positive factor of at least 1 preserves self-concordance:

f is self concordant = «f is self concordant for a >1

e Addition preserves self-concordance

f1 and fy is self concordant = f; + f5 is self concordant

e if f(x) is self-concordant, affine transformations g(x) := f(Ax + b) are

also self-concordant

o 21Ax + bl'z, —log(x) and —logdet(X) are self-concordant functions
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Newton’s Method for Self-concordant Functions

e Suppose f is a self-concordant function
e Theorem

Newton's method with line search finds an ¢ approximate point in less
than

1
T := constant x (f(xzg) — f*) + log, log, —
€

Iterations.

e Computational complexity: T'x (cost of Newton Step)
due to Nesterov and Nemirovski
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Interior Point Programming

e Logarithmic Barrier Method

Goal:

min fo(z) s.t. fi(x) <0,i=1,...,n
Indicator penalized form

m:gn folz) + Zﬂ(fz(a:))

where [ is a {0, 00} valued indicator function
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e Approximate the indicator via _1Og(;fi("”>)

xz*(t) = arg mln fo(x) — = Z log(—f;(x

= arg mln tfo(x Z log(—fi(x

e t > 0 is the barrier parameter

o r*(t),t > 0 is called the central path

EE364b, Stanford University

16



EE364b, Stanford University

10

Interior Point Programming
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Example: Linear Programming

e LP in standard form where A € R™*¢

min clz
Ax<b

e Central path

arg min, tcl'x — Z log(b; — a} )
i=1

e self-concordant function

o Hessian V2f(x) = Al'diag ( L ) A takes O(nd?) operations

(bi_ai x)?
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Barrier Method for Constrained Convex Programs
p* =min fo(x) s.t. fi(x) <0,¢1=1,...,n

Suppose that fy, f1,..., f, are twice differentiable. Define
27 (t) »= mint fo(z) — > log(—fi(=))
i=1

1. Centering step. Compute z*(¢) via Newton's Method starting at x
2. Update = := z*(¢)
3. Stopping criterion. quit if n/t < €

4. Increase t. t := ut
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Central path for an LP
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Other Self-concordant (sc) Barrier Functions

e —logdetX is an sc barrier for the positive semidefinite cone

o —log(x? Az + bz + ¢) is an sc barrier for the convex set
P Ax+bTz+¢> 0 when A >0

o —log(y? — z%) is an sc barrier for the second order cone ||z||2 < ¥
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Barrier Method for Constrained Convex Programs

e terminates with fy(z*(t)) — p* <€

e choice of u involves a trade-off: large 4+ means fewer outer iterations,
more inner (Newton) iterations. Typical values of = 10 — 20
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Optimality gap of the central path

o Central path z*(¢) = argmin, tfo(x) — >_._, log(— fi(x))

e Optimality conditions x*(t) (necessary and sufficient)

V(o) + 3~ ey VA () =0

e *(t) minimizes the Lagrangian for the original problem for
_ 1
AT AT O)
VoL(z,A) = Vfo(z) + Y AV fi(z) =0
i=1
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o \(t) = T 1*(t)) > 0 is dual feasible and provides a lower-bound

min_fo(z) > maxmin fo(z) + ) Aifi(2)
1=1

z st f;(z)<0Vi A=0
> min fo(z) + Y N (t)fi(2)
=1
t)) + Z N (t) fi(™ (¢

thz = fola"(t)) - 7

Therefore optimality gap is at most n/t
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Complexity Analysis: Number of centering steps

e Assuming that we can find 2*(t) = arg min, t fo(z) — Y., log(—fi(x))
via Newton's method for t = t°, ut®, u%t%, ..., the optimality gap after k
centering steps is #

e Accuracy € is achieved after

log(m/(et”))
log p

centering steps, plus the initial centering step
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Complexity Analysis: Number of Newton lterations

e Number of Newton iterations per centering step is bounded by

1
T := constant x (f(xp) — min f(x)) + log, log, —
x €

e Bound on the effort of computing x*(ut) starting at x = x*(t) depends
on the initial optimality gap f(xg) — min f(x) where

f(x) = tfo(x) + i log(—fi(x))

e it can be shown that (see Chapter 11.5 in Convex Optimization)

nl(u—1—1o 1
(p : g“)+log210g2;

T < constant X
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log(n/(et'9))
log p

e number of outer (centering) iterations is

log(n/(et'?)) n(u—1—log 1)
log Y

e total number of Newton iterations [NV :=
e confirms the trade-off in the choice of u

e for u =1+ 1/4/n, total number of Newton iterations
(0)
N = O(y/nlog (n/z ))

e this proves the polynomial-time complexity of barrier method for convex
programming

e this choice of i optimizes worst-case complexity. In practice we choose
1 fixed, e.g., p =10,...,20. The number of outer iterations is in the
tens and not very sensitive for u > 10.
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Numerical Example

e \We solve a Second Order Cone Program

min fx

s.t. ||AZCC -+ bZHQ < CZTQZ +d;,t=1,...,n
using the sc barrier — > log ((¢} = + d;)* — || Az + b]|3)

e The central path is given by

r*(t) = argmint T2z — ) "log ((cf & + d;)* — || Az + b]|3)
=1
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Numerical Example

e Randomly generated problem instances where n = 50 and z € R®"

2 _
10 I—I_ :
100
e,
28]
o10)]
21072
=
g
10—4
106 =50 =200 p=2
0 20 40 60 80

Newton iterations
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Reformulating Non-differentiable Objectives

e Example: Robust regression

min || Ax — bl
T

e Reformulation

min ||y||1 = min 17's
.y ,y,s
st. Ar —b=y s.t. —s; <y < s; Vi
Ar —b=y
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Conclusions

e Interior Point (barrier) methods run in provably polynomial-time for
convex optimization when we have self-concordant barriers

e They are also very efficient in practice

e Main computational load is solving 20-30 linear systems for the Newton
iterations

e There are also primal-dual interior methods which are more efficient

EE364b, Stanford University 31



