
Newton’s Method and Self-Concordance

• Differentiable convex optimization and acceleration

• Newton’s Method

• Armijo backtracking search

• self-concordant functions

• Interior Point Method

EE364b, Stanford University



Unconstrained Differentiable Convex Optimization

minx f(x)

• f(x) strongly convex and differentiable

• ∂f(x) = {∇f(x)}

• subgradient descent = gradient descent

EE364b, Stanford University 1



Gradient Descent for Strongly Convex Functions

• recall strong convexity

A convex function f is called strongly convex if there exists two positive
constants β− ≤ β+ such that

β−I � ∇2f(x) � β+I

for every x in the domain of f

• Equivalent to

λmin(∇2f(x)) ≥ β−
λmax(∇2f(x)) ≤ β+

EE364b, Stanford University 2



Gradient Descent for Strongly Convex Functions

xt+1 = xt − µt∇f(xt)

• Suppose that f is strongly convex with parameters β−, β+

define f∗ := minx f(x)

Convergence result: Using constant step-size µt = 1
β+

, we have

f(xt+1)− f∗ ≤ (1− β−
β+

)(f(xt)− f∗)

recursively applying we get

• f(xk)− f∗ ≤ (1− β−
β+

)k(f(x0)− f∗)

EE364b, Stanford University 3



Gradient Descent for Strongly Convex Functions

• linear convergence

• rate depends on the curvature

f(xk)− f∗ ≤ (1− β−
β+

)k(f(x0)− f∗)

• minimizing f(Ax) where A ∈ Rn×d via Gradient Descent takes

O(κnd log(1ε)) operations where κ = β+
β−

EE364b, Stanford University 4



Gradient Descent with Momentum (Heavy Ball Method)
for Strongly Convex Functions

• xt+1 = xt − µ∇f(xt) + β(xt − xt−1)

• step-size parameter µ = 4

(
√
β++
√
β−)2

• momentum parameter β = max
(
|1−

√
µβ−|, |1−

√
µβ+|

)2
• minimizing f(Ax) where A ∈ Rn×d via Gradient Descent with

Momentum takes O(
√
κnd log(1ε)) where κ = β+

β−

EE364b, Stanford University 5



Newton’s Method

• Suppose f is twice differentiable, and consider a second order Taylor
approximation at a point xt

f(y) ≈ f(xt) +∇f(xt)
T (y − xt) +

1

2
(y − xt)∇2f(xt)(y − xt)

• minimizing the approximation yields xt+1 = xt −
(
∇2f(x)

)−1∇f(x)

• Damped Newton updates: xt+1 = xt − t∆t where

∆t :=
(
∇2f(x)

)−1∇f(x), where t is a step-size parameter

• Hessian of f(Ax) where A ∈ Rn×d takes O(nd2) operations to
calculate and O(d3) to invert. Alternatively, we can factorize in O(nd2)
time (QR, Cholesky, SVD)

EE364b, Stanford University 6



Choosing step-sizes: backtracking (Armijo) line search

EE364b, Stanford University 7



Newton’s Method with Line Search

EE364b, Stanford University 8



Newton’s Method for Strongly Convex Functions

• Strong convexity with parameters β−, β+

• Lipschitz continuity of the Hessian

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖22

for some constant L > 0

• Basic convergence result: The number of iterations for ε approximate
solution in objective value is bounded by

T := constant× f(x0)− f∗

β−/β2
+

+ log2 log2

(ε0
ε

)
where ε0 = 2β3

−/L
2. Computational complexity: O((nd2 + nd)T )

EE364b, Stanford University 9



Affine Invariance of Newton’s Method

• The previous analysis can be improved

• The key insight is that Newton’s Method is invariant under linear
transformations

• Newton’s Method for f(x) is xt+1 = xt −
(
∇2f(x)

)−1∇f(x)

• Consider a linear invertible transformation y = Ax and
g(y) = f(A−1y). Then Newton’s Method for g(y) is given by

yt+1 = yt −
(
∇2g(yt)

)−1∇g(yt)

= Axt − (A−T∇2f(xt)A
−1)−1A−T∇f(x)

= Axt −A∇2f(xt)
−1∇f(xt) = Axt+1

EE364b, Stanford University 10



Self-concordant Functions in R

• A function f : R→ R is self-concordant when f is convex and

f ′′′(x) ≤ 2f ′′(x)3/2

for all x in the domain of f .

• Examples: linear and quadratic functions, negative logarithm

• One can use a constant k other than 2 in the definition. The number 2
is used in the definition so that − log(x) is self-concordant

EE364b, Stanford University 11



Self-concordant Functions in Rd

• A function f : Rd → R is self-concordant when it is self-concordant
along every line, i.e.,

(i) f is convex
(ii) g(t) := f(x+ tv) is self-concordant for all x in the domain of f and

all v

EE364b, Stanford University 12



Self-concordant Functions in Rd

• Scaling with a positive factor of at least 1 preserves self-concordance:

f is self concordant =⇒ αf is self concordant for α ≥ 1

• Addition preserves self-concordance

f1 and f2 is self concordant =⇒ f1 + f2 is self concordant

• if f(x) is self-concordant, affine transformations g(x) := f(Ax+ b) are
also self-concordant

• xTAx+ bTx, − log(x) and − log det(X) are self-concordant functions

EE364b, Stanford University 13



Newton’s Method for Self-concordant Functions

• Suppose f is a self-concordant function

• Theorem

Newton’s method with line search finds an ε approximate point in less
than

T := constant× (f(x0)− f∗) + log2 log2

1

ε

iterations.

• Computational complexity: T× (cost of Newton Step)
due to Nesterov and Nemirovski

EE364b, Stanford University 14



Interior Point Programming

• Logarithmic Barrier Method

Goal:

min
x
f0(x) s.t. fi(x) ≤ 0, i = 1, ..., n

Indicator penalized form

min
x
f0(x) +

n∑
i=1

I(fi(x))

where I is a {0,∞} valued indicator function

EE364b, Stanford University 15



• Approximate the indicator via − log(−fi(x))
t

x∗(t) = arg min
x
f0(x)− 1

t

n∑
i=1

log(−fi(x))

= arg min
x
tf0(x)−

n∑
i=1

log(−fi(x))

• t > 0 is the barrier parameter

• x∗(t), t > 0 is called the central path

EE364b, Stanford University 16



Interior Point Programming

EE364b, Stanford University 17



Example: Linear Programming

• LP in standard form where A ∈ Rn×d

min
Ax≤b

cTx

• Central path

arg minx tc
Tx−

n∑
i=1

log(bi − aTi x)

• self-concordant function

• Hessian ∇2f(x) = ATdiag
(

1
(bi−aTi x)

2

)
A takes O(nd2) operations

EE364b, Stanford University 18



Barrier Method for Constrained Convex Programs

p∗ = min f0(x) s.t. fi(x) ≤ 0, i = 1, . . . , n

Suppose that f0, f1, . . . , fn are twice differentiable. Define

x∗(t) := min
x
tf0(x)−

n∑
i=1

log(−fi(x))

1. Centering step. Compute x∗(t) via Newton’s Method starting at x

2. Update x := x∗(t)

3. Stopping criterion. quit if n/t < ε

4. Increase t. t := µt

EE364b, Stanford University 19



Central path for an LP

EE364b, Stanford University 20



Other Self-concordant (sc) Barrier Functions

• − log detX is an sc barrier for the positive semidefinite cone

• − log(xTAx+ bTx+ c) is an sc barrier for the convex set
xTAx+ bTx+ c > 0 when A � 0

• − log(y2 − xx) is an sc barrier for the second order cone ‖x‖2 ≤ y

EE364b, Stanford University 21



Barrier Method for Constrained Convex Programs

• terminates with f0(x
∗(t))− p∗ ≤ ε

• choice of µ involves a trade-off: large µ means fewer outer iterations,
more inner (Newton) iterations. Typical values of µ = 10− 20

EE364b, Stanford University 22



Optimality gap of the central path

• Central path x∗(t) = arg minx tf0(x)−
∑n
i=1 log(−fi(x))

• Optimality conditions x∗(t) (necessary and sufficient)

t∇f0(x∗) +

n∑
i=1

1

−fi(x∗(t))
∇fi(x∗(t)) = 0

• x∗(t) minimizes the Lagrangian for the original problem for
λ = − 1

tfi(x∗(t))

∇xL(x, λ) = ∇f0(x) +

n∑
i=1

λi∇fi(x) = 0

EE364b, Stanford University 23



• λ∗(t) = − 1
tfi(x∗(t))

> 0 is dual feasible and provides a lower-bound

min
x s.t. fi(x)≤0∀i

f0(x) ≥ max
λ�0

min
x
f0(x) +

n∑
i=1

λifi(x)

≥ min
x
f0(x) +

n∑
i=1

λ∗(t)fi(x)

= f0(x
∗(t)) +

n∑
i=1

λ∗(t)fi(x
∗(t))

= f0(x
∗(t))−

n∑
i=1

fi(x
∗(t))

tfi(x∗(t))
= f0(x

∗(t))− n
t

Therefore optimality gap is at most n/t

EE364b, Stanford University 24



Complexity Analysis: Number of centering steps

• Assuming that we can find x∗(t) = arg minx tf0(x)−
∑n
i=1 log(−fi(x))

via Newton’s method for t = t0, µt0, µ2t0, . . ., the optimality gap after k
centering steps is n

µkt0

• Accuracy ε is achieved after

log(m/(εt0))

logµ

centering steps, plus the initial centering step

EE364b, Stanford University 25



Complexity Analysis: Number of Newton Iterations

• Number of Newton iterations per centering step is bounded by

T := constant× (f(x0)−min
x
f(x)) + log2 log2

1

ε

• Bound on the effort of computing x∗(µt) starting at x = x∗(t) depends
on the initial optimality gap f(x0)−min f(x) where
f(x) := tf0(x) +

∑n
i=1 log(−fi(x))

• it can be shown that (see Chapter 11.5 in Convex Optimization)

T ≤ constant× n(µ− 1− logµ)

γ
+ log2 log2

1

ε

EE364b, Stanford University 26



• number of outer (centering) iterations is log(n/(εt(0)))
log µ

• total number of Newton iterations N := log(n/(εt(0)))
log µ

n(µ−1−log µ)
γ

• confirms the trade-off in the choice of µ

• for µ = 1 + 1/
√
n, total number of Newton iterations

N = O(
√
n log

(n/t(0)
ε

)
)

• this proves the polynomial-time complexity of barrier method for convex
programming

• this choice of µ optimizes worst-case complexity. In practice we choose
µ fixed, e.g., µ = 10, . . . , 20. The number of outer iterations is in the
tens and not very sensitive for µ ≥ 10.

EE364b, Stanford University 27



Numerical Example

• We solve a Second Order Cone Program

min fTx

s.t. ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . , n

using the sc barrier −
∑n
i=1 log

(
(cTi x+ di)

2 − ‖Aix+ b‖22
)

• The central path is given by

x∗(t) = arg min
x
tfTx−

n∑
i=1

log
(
(cTi x+ di)

2 − ‖Aix+ b‖22
)

EE364b, Stanford University 28



Numerical Example

• Randomly generated problem instances where n = 50 and x ∈ R50

EE364b, Stanford University 29



Reformulating Non-differentiable Objectives

• Example: Robust regression

min
x
‖Ax− b‖1

• Reformulation

min
x,y
‖y‖1 = min

x,y,s
1Ts

s.t. Ax− b = y s.t. − si ≤ yi ≤ si ∀i
Ax− b = y

EE364b, Stanford University 30



Conclusions

• Interior Point (barrier) methods run in provably polynomial-time for
convex optimization when we have self-concordant barriers

• They are also very efficient in practice

• Main computational load is solving 20-30 linear systems for the Newton
iterations

• There are also primal-dual interior methods which are more efficient

EE364b, Stanford University 31


