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Relations

e a relation F on a set R" is a subset of R" x R"

e we overload the notation F'(x) to mean the set F(x) ={y|(z,y) € F'}

e we can think of I’ as an operator that maps vectors x € R" to sets
F(x) CR"

e the domain and graph of F' are defined as

dom F = {x |3y (z,y) € F'}
grF'={(z,y) e R" xR" |z edomF, y € F(x)}
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e if F'(x) is a singleton, we write F'(x) = y instead of F'(x) = {y} and
say F'is a function

e any function or operator f : C'— R" with C C R" is a relation. In this
case, f(x) is ambiguous since it can mean the value f(x) or the set

1f(2)}
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Examples

e empty relation: ()

e full relation: R" x R"

e identity: [ := {(z,z)|z € R"}

e zero: 0:={(z,0)|z € R"}

e unit circle: {x € R"|z% 4 25 =1}

e subdifferential relation: 0f = {(z,0f(z)) |z € R"}
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Example: subdifferential of |z|

e consider the subdifferential 0f(x) of the convex function f(x) = |z

F(x)
| gr(F)
1
(1 x <0
F(z)=41[]-1,1] =0
1 x>0
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Operations on relations

e inverse relation: F~!:= {(y,z) | (z,y) € F}
e composition: F'G := {(z,y) |3z (x,2) € F, (z,y) € G}
e scalar multiplication: aF = {(z,ay) | (z,y) € F

e addition F'+ G ={(z,y + 2) | (x,y) € F, (x,2) € G}
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Example: inverse relation

e consider the subdifferential relation for the convex function f(x) = |z

o F={(,0f(x)) |z €R")
F(x) Fl(x)

1
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Generalized equations

e goal: solve generalized equation 0 € R(x), or equivalently:

findz s.t. (z,0) € R

e solution setis X ={xr € dom R |0 € R(x)}

e example: if R=0f and f : R™ — R" is a convex function, then
0 € R(x) means x minimizes f
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Monotone operators

e Definition: A relation F'is a monotone operator if

(w—v) ' (x—y) >0 forall (x,u), (y,v)€F

e F'is maximal monotone if there is no monotone operator that properly
contains it

e solving generalized equations with maximal monotone operators capture
many problems in convex optimization
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Maximal monotone operators on R

F' is maximal monotone iff it is a connected curve with no endpoints, with
nonnegative slope

monotone
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non-monotone

EE364b, Stanford University

Examples

monotone but not maximal
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Basic properties

suppose F' and G are monotone operators

e sum: F'+ (G is monotone

e nonnegative scaling: aF' is monotone if & > 0

e inverse: I'~! is monotone

e congruence: for A € R"*™ ATF(Az) is monotone

e zero set: {xr € R" |0 € F(x)} is convex if F'is maximal monotone

e the affine function F'(x) = Ax + b is monotone iff A + AT =0
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Subdifferential

F(x) = 0f(x) is monotone

e suppose u € df(x) and v € df(y)

e write the subgradient inequality to obtain

0<(u—v)(z—y)

e if f is closed convex proper (CCP) then F(z) = 0f(x) is maximal
monotone
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Subdifferential of conjugate

If fis CCP, we have

@)~ = of"
Proof:
uedf(r) < 0€df(x)—u
< x € argmzinf(z) —ulz
= —flx) +u'z = f*(u)
= fla)+ f(u) =u'a
— z € df*(u)
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Resolvent of an operator

e for a relation R and )\ € R, resolvent is the relation

S:=({I+A\R)™*

o I+ AR ={(z,z+ \y)|(z,y) € F'}
o S=I+AR)"" ={(z+\y,2)|(z,y) € R}
e for \ # 0, we have the equivalent expression

S ={(w,v)[(u—v)/A € R(v)}
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Resolvent of subdifferential operator: Proximal mapping

o let z = (I +\0f) Y(x) for some X\ > 0 and convex f
e implies that x € z + A\ f(2)

e which is same as

1
0 € 0.1() + 55 — o]
e equivalently .
2 = argmin f(u) + o> [lu — =3

e ie, 2 = prox, ()

e example: resolvent of the subdifferential of f(x) = |x|
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F(x)

F(x)

(I + AF)(x)

(I +AF) 1(x)
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Example: Indicator Function

e let f = I, indicator function of convex set C

e Of is the normal cone operator

0 x ¢ C

Neo(z) = {{wa(Z_a;)<OVz€C} x el

e proximal operator of f (i.e., resolvent of N¢) is

, 1
(I + )\0]0)_1(513) — arg mdnlc(u) + ﬁHu — a:H% = [l (x)

e where Il (x) is Euclidean projection onto C
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KKT operator

consider the equality constrained convex problem

minimize  f(x)

subject to Az =0b
e Lagrangian L(z,y) = f(x) +y! (Az —b).

e associated KKT operator on R" x R™

=] e - 050 -

e zero set of F' is the set of primal-dual optimal points (saddle points of L)
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e KKT operator is monotone: sum of monotone operators

F(z,y) = [ 8fb(x) ] + [ _OA %T ] [;
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Resolvent of multiplier to residual map

e consider F': multiplier to residual mapping for the convex problem
minimize f(x)
subject to Az =0
e F(y) :==b— Az where x € argmin,, L(w,y) = f(w) + y (Axz — b)
o z=(I+\F) (y) implies y € 2 + \F(2)
e ie., 2+ A(b— Ax) =y for some z € argmin,, L(w, z)
e can be rewritten as
z=1y+ MAzx —b), 0caf(x)+ Az
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Resolvent of multiplier to residual map
e rewrite second term as 0 € Of(z) + ATy + AAT(Az —b), or

r € argmin f(w) + y' (Aw — b) + \/2||Aw — b||3

e to summarize, the resolvent z = R(y) can be found via

r = argmin f(w) +y* (Aw — b) + \/2||Aw — b||3

z=y+ ANAx — b)
e we recover the augmented Lagrangian
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Nonexpansive and contractive operators

e An operator F' has Lipschitz constant L if

|F(z) = F(y)lla < Lijz —yll2  forallz, y € domF

e if [ is Lipschitz, then it is single valued since |F'(x) — F(z)|l2 <0
e if L =1, we say F is nonexpansive

o if L <1, we say F is contraction with factor L
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Properties

e if I' and GG have Lipschitz constant L,
0F + (1 —0)G, 6 < [0,1]
also has Lipschitz constant L
e composition of nonexpansive operators is nonexpansive
e composition of nonexpansive operator and contraction is contraction

e when F : R" — R" is nonexpansive, its set of fixed points
{x| F(x) = x} is convex (can be empty)

e a contraction has a single fixed point
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Nonexpansiveness of the resolvent

e for A € R, resolvent of relation F' is

R=(I+4XF)!

e when A > 0 and F' monotone, R is nonexpansive, hence single-valued

e when A > 0 and ' maximal monotone, dom R = R"
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Fixed Point lterations

Banach fixed point theorem:
e suppose that F' is a contraction with Lipschitz constant L < 1 and
dom F' = R"
e then, the iteration
eh = F(2)

converges to the unique fixed point of F'
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Example: Gradient Descent with constant step-size

e assume f is strongly convex and V f is Lipschitz, i.e.,

mI <X V?f(x) X LI

e gradient descent method is z**! := 2% — aV f(2F) = F(2F)
e fixed points are solutions of F'(z) =z

e DF(z)=1—aV?f(x)

e [ is Lipschitz with parameter max{|l — am/|, |1 — aL|}

e F'is a contraction when 0 < o < 2/L, hence gradient descent
converges (geometrically) when 0 < o < 2/L
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Damped iteration of a nonexpansive operator

e suppose F' is nonexpansive, dom F' = R", with fixed point set
X =A{z|F(z) =z}

e simple fixed point iteration of F' may not converge (e.g., rotation)

e damped iteration:

el = (1 — 0F)2® + 08 F(2F)

e step-sizes 0% € (0,1)
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Convergence of damped iteration

e suppose that step-sizes satisfy
oo
> 01 -6 =0
k=0

e example: 0, = kiﬂ

e then we have

min ||F(2?) —2/||]s =0 and  min dist(z?, X) — 0
J=1,...,k j=1,...,k

e some iterates yield arbitrarily good approximate fixed points and get
close to the fixed point set X
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Example: Proximal Point Method
minimize f(x)
e optimality condition: 0 € 0f(z*) < z* € " + \0f(z")
e resolvent fixed point iteration

eh = R(z®) = (I + X0f) 1 (z")

e this is the Proximal Point Method

. 1
k1. prOXﬁl/)\(iCk) = arg min flx) + ﬁHﬂ? — kaH%

X
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Example: Proximal Gradient Method

minimize f(x) + g(x)
subject to Az =0

f is smooth
g: R"— RU{+o0} is closed convex proper.

e optimality conditions: 0 € V f(z*) + dg(z*)
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e multiply both sides by A > 0 and add x* to both sides

0 € AV f(x™) + Adg(z™)
¥ — Af(z™) € ¥ 4+ Adg(x™)
(I =AVf)(z") € (I + Adg))(z")
e invert the relation: z* € (I + \dg) (I — AV f)(z*)

e fixed point equation: (an algorithmic way to check optimality)
z* = (I +A0g)" (I — AV f)(z")

e Proximal Gradient Method as fixed point iteration

eF T = (I + X0g) (I — AV £) (")
= prOXAg(azk — AV f(z™))
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Example: Method of Multipliers
e let F' be the multiplier to residual mapping for the problem
minimize f(x)
subject to Az =1b
o ie., F(y) =:b— Ax where x € argmin, L(z,y) = f(2) + y! (Az — b)

e resolvent iteration 2% := R(2*) = (I + A\F)~1(2*) becomes the
method of multipliers

2Pl = arg mui)n f(w) + (yk)T(Aw —b) + /2| Aw — b”%
yk—l—l _ yk + )\(Aazk+1 o b)
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Operator Splitting

minimize f(x) 4+ g(x)

e solve 0 € Of(x) + Og(x), where f(x) and Jg(x) are maximal
monotone

e using resolvents

Ry = (I+X0f)" ", R, = (I +Xdg)~!

o cfficient when proximal operators of f and g are easy to evaluate
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Operator Splitting
e optimality condition 0 € df(x) 4+ dg(x) holds iff

(2R; —1)(2R, — I)(2) = 2.z = Ry(2)
proof:
let . = Ry(2), 2= (2R, —1I)(2) =2x—2
F=Rp3), z2=2R;—1)(3) =252
then we have x = 7.
add z € x + A\dg(x) and zZ € x + AOf(x) to get

z+ 2z €2x+ ANf(x) + Adg(x) and note that z + Z = 2z
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Operator Splitting Methods

e Peaceman-Rachford splitting is fixed point iteration

1 = (2R; — (2R, — I)(=")

converges when one of the operators is a contraction
e Douglas-Rachford splitting' is damped fixed point iteration

1 1
2l = §Zk + 5(2Rf —1)(2R, — I)(z%)

always converges when 0 € 0f(x) 4+ dg(x) has a solution

o (y:=2R; — I is called the Cayley operator of f

1Douglas and Rachford, “On the numerical solution of heat conduction problems in 2&3 space variables.” Trans. AMS (1956)

EE364b, Stanford University

35



Alternating direction method of multipliers

e Douglas-Rachford splitting is

1
¢’ := argmin f(x) + — ||z — 2"||2
v 2A\
Z = 2a" — 2K
k+1 . 1 /
¥t = argmin g(x) —|—5Haz—z |
o R SR 5 S

e a special case of ADMM

e Dykstra’s alternating projections when f = I, g = Ip for two convex
sets C, D
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