Monotone Operators

- monotone operators
- resolvent
- fixed point iteration
- augmented lagrangian

Relations

- a relation F on a set \mathbf{R}^n is a subset of $\mathbf{R}^n\times\mathbf{R}^n$
- we overload the notation F(x) to mean the set $F(x) = \{y \mid (x, y) \in F\}$
- we can think of F as an operator that maps vectors $x \in \mathbf{R}^n$ to sets $F(x) \subseteq \mathbf{R}^n$
- $\bullet\,$ the domain and graph of F are defined as

$$\operatorname{dom} F = \{ x \,|\, \exists y \,(x, y) \in F \}$$
(1)

$$\operatorname{gr} F = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n \,|\, x \in \operatorname{dom} F, \, y \in F(x)\}$$
(2)

- if F(x) is a singleton, we write F(x) = y instead of $F(x) = \{y\}$ and say F is a function
- any function or operator $f : C \to \mathbb{R}^n$ with $C \subseteq \mathbb{R}^n$ is a relation. In this case, f(x) is ambiguous since it can mean the value f(x) or the set $\{f(x)\}$

Examples

- empty relation: \emptyset
- full relation: $\mathbf{R}^n \times \mathbf{R}^n$
- identity: $I := \{(x, x) \mid x \in \mathbf{R}^n\}$
- zero: $0 := \{(x, 0) | x \in \mathbf{R}^n\}$
- unit circle: $\{x \in \mathbf{R}^n \mid x_1^2 + x_2^2 = 1\}$
- subdifferential relation: $\partial f = \{(x, \partial f(x)) | x \in \mathbf{R}^n\}$

Example: subdifferential of |x|

• consider the subdifferential $\partial f(x)$ of the convex function f(x) = |x|

Operations on relations

- inverse relation: $F^{-1} := \{(y, x) | (x, y) \in F\}$
- composition: $FG := \{(x, y) \mid \exists z (x, z) \in F, (z, y) \in G\}$
- scalar multiplication: $\alpha F := \{(x, \alpha y) \mid (x, y) \in F \}$
- addition $F + G = \{(x, y + z) | (x, y) \in F, (x, z) \in G\}$

Example: inverse relation

- consider the subdifferential relation for the convex function f(x) = |x|
- $F = \{(x, \partial f(x)) \mid x \in \mathbf{R}^n\}$

Generalized equations

• goal: solve generalized equation $0 \in R(x)$, or equivalently:

find x s.t. $(x, 0) \in R$

- solution set is $X = \{x \in \operatorname{\mathbf{dom}} R \mid 0 \in R(x)\}$
- example: if $R = \partial f$ and $f : \mathbf{R}^n \to \mathbf{R}^n$ is a convex function, then $0 \in R(x)$ means x minimizes f

Monotone operators

• **Definition:** A relation F is a monotone operator if

$$(u-v)^T(x-y) \ge 0$$
 for all $(x,u), (y,v) \in F$

- F is maximal monotone if there is no monotone operator that properly contains it
- solving generalized equations with maximal monotone operators capture many problems in convex optimization

Maximal monotone operators on R

 ${\cal F}$ is maximal monotone iff it is a connected curve with no endpoints, with nonnegative slope

Examples

Basic properties

suppose F and G are monotone operators

- sum: F + G is monotone
- nonnegative scaling: αF is monotone if $\alpha \geq 0$
- inverse: F^{-1} is monotone
- congruence: for $A \in \mathbf{R}^{n \times m}$, $A^T F(Az)$ is monotone
- zero set: $\{x \in \mathbf{R}^n \mid 0 \in F(x)\}$ is convex if F is maximal monotone
- the affine function F(x) = Ax + b is monotone iff $A + A^T \succeq 0$

Subdifferential

 $F(x) = \partial f(x)$ is monotone

• suppose
$$u \in \partial f(x)$$
 and $v \in \partial f(y)$

• write the subgradient inequality to obtain

$$0 \le (u-v)^T (x-y)$$

• if f is closed convex proper (CCP) then $F(x) = \partial f(x)$ is maximal monotone

Subdifferential of conjugate

If f is CCP, we have

$$(\partial f)^{-1} = \partial f^*$$

Proof:

$$u \in \partial f(x) \iff 0 \in \partial f(x) - u$$
$$\iff x \in \arg\min_{z} f(z) - u^{T}z$$
$$\iff -f(x) + u^{T}x = f^{*}(u)$$
$$\iff f(x) + f^{*}(u) = u^{T}x$$
$$\iff x \in \partial f^{*}(u)$$

EE364b, Stanford University

Resolvent of an operator

• for a relation R and $\lambda \in \mathbf{R}$, **resolvent** is the relation

$$S := (I + \lambda R)^{-1}$$

•
$$I + \lambda R = \{ (x, x + \lambda y) \, | \, (x, y) \in F \}$$

- $S = (I + \lambda R)^{-1} = \{ (x + \lambda y, x) \mid (x, y) \in R \}$
- for $\lambda \neq 0$, we have the equivalent expression

$$S = \{(u, v) \mid (u - v) / \lambda \in R(v)\}$$

Resolvent of subdifferential operator: Proximal mapping

- let $z = (I + \lambda \partial f)^{-1}(x)$ for some $\lambda > 0$ and convex f
- implies that $x \in z + \lambda \partial f(z)$
- which is same as

$$0 \in \partial_z f(z) + \frac{1}{2\lambda} \|z - x\|_2^2$$

• equivalently

$$z = \arg\min_{u} f(u) + \frac{1}{2\lambda} ||u - x||_{2}^{2}$$

- i.e., $z = \mathbf{prox}_{\lambda f}(x)$
- example: resolvent of the subdifferential of f(x) = |x|

Example: Indicator Function

- let $f = I_C$, indicator function of convex set C
- ∂f is the **normal cone operator**

$$N_C(x) := \begin{cases} \emptyset & x \notin C\\ \{w \mid w^T(z - x) \le 0 \ \forall z \in C\} & x \in C \end{cases}$$

• proximal operator of f (i.e., resolvent of N_C) is

$$(I + \lambda \partial I_C)^{-1}(x) = \arg\min_{u} I_C(u) + \frac{1}{2\lambda} ||u - x||_2^2 = \Pi_C(x)$$

• where $\Pi_C(x)$ is Euclidean projection onto C

KKT operator

consider the equality constrained convex problem

 $\begin{array}{ll}\text{minimize} & f(x)\\ \text{subject to} & Ax = b \end{array}$

- Lagrangian $L(x, y) = f(x) + y^T (Ax b)$.
- associated KKT operator on $\mathbf{R}^n \times \mathbf{R}^m$

$$F(x,y) = \begin{bmatrix} \partial_x L(x,y) \\ -\partial_y L(x,y) \end{bmatrix} = \begin{bmatrix} \partial f(x) + A^T y \\ b - Ax \end{bmatrix} = \begin{bmatrix} r^{\text{dual}} \\ -r^{\text{primal}} \end{bmatrix}$$

• zero set of F is the set of primal-dual optimal points (saddle points of L)

EE364b, Stanford University

• KKT operator is monotone: sum of monotone operators

$$F(x,y) = \begin{bmatrix} \partial f(x) \\ b \end{bmatrix} + \begin{bmatrix} 0 & A^T \\ -A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Resolvent of multiplier to residual map

• consider F : multiplier to residual mapping for the convex problem

 $\begin{array}{ll}\text{minimize} & f(x)\\ \text{subject to} & Ax = b \end{array}$

- F(y) := b Ax where $x \in \arg \min_w L(w, y) = f(w) + y^T (Ax b)$
- $z = (I + \lambda F)^{-1}(y)$ implies $y \in z + \lambda F(z)$
- i.e., $z + \lambda(b Ax) = y$ for some $x \in \arg \min_w L(w, z)$
- can be rewritten as

$$z = y + \lambda(Ax - b),$$
 $0 \in \partial f(x) + A^T z$

EE364b, Stanford University

Resolvent of multiplier to residual map

• rewrite second term as $0 \in \partial f(x) + A^T y + \lambda A^T (Ax - b)$, or

$$x \in \arg\min_{w} f(w) + y^{T}(Aw - b) + \lambda/2 ||Aw - b||_{2}^{2}$$

• to summarize, the resolvent z = R(y) can be found via

$$x = \arg\min_{w} f(w) + y^{T}(Aw - b) + \lambda/2 \|Aw - b\|_{2}^{2}$$
$$z = y + \lambda(Ax - b)$$

• we recover the augmented Lagrangian

Nonexpansive and contractive operators

• An operator F has Lipschitz constant L if

 $||F(x) - F(y)||_2 \le L||x - y||_2$ for all $x, y \in \operatorname{dom} F$

- if F is Lipschitz, then it is single valued since $||F(x) F(x)||_2 \le 0$
- if L = 1, we say F is **nonexpansive**
- if L < 1, we say F is **contraction** with factor L

Properties

• if F and G have Lipschitz constant L,

$$\theta F + (1 - \theta)G, \qquad \theta \in [0, 1]$$

also has Lipschitz constant \boldsymbol{L}

- composition of nonexpansive operators is nonexpansive
- composition of nonexpansive operator and contraction is contraction
- when $F : \mathbb{R}^n \to \mathbb{R}^n$ is nonexpansive, its set of fixed points $\{x \mid F(x) = x\}$ is convex (can be empty)
- a contraction has a single fixed point

Nonexpansiveness of the resolvent

• for $\lambda \in \mathbf{R}$, resolvent of relation F is

$$R = (I + \lambda F)^{-1}$$

- when $\lambda \ge 0$ and F monotone, R is nonexpansive, hence single-valued
- when $\lambda \ge 0$ and F maximal monotone, $\operatorname{\mathbf{dom}} R = \mathbf{R}^n$

Fixed Point Iterations

Banach fixed point theorem:

- suppose that F is a contraction with Lipschitz constant L < 1 and $\operatorname{dom} F = \mathbf{R}^n$
- then, the iteration

$$x^{k+1} := F(x^k)$$

converges to the unique fixed point of F

Example: Gradient Descent with constant step-size

• assume f is strongly convex and ∇f is Lipschitz, i.e.,

$$m I \preceq \nabla^2 f(x) \preceq L I$$

- gradient descent method is $x^{k+1} := x^k \alpha \nabla f(x^k) = F(x^k)$
- fixed points are solutions of F(x) = x
- $DF(x) = I \alpha \nabla^2 f(x)$
- F is Lipschitz with parameter $\max\{|1 \alpha m|, |1 \alpha L|\}$
- F is a contraction when $0 < \alpha < 2/L$, hence gradient descent converges (geometrically) when $0 < \alpha < 2/L$

Damped iteration of a nonexpansive operator

- suppose F is nonexpansive, $\operatorname{dom} F = \mathbb{R}^n$, with fixed point set $X = \{x \mid F(x) = x\}$
- simple fixed point iteration of F may not converge (e.g., rotation)
- damped iteration:

$$x^{k+1} := (1 - \theta^k)x^k + \theta^k F(x^k)$$

• step-sizes $\theta^k \in (0,1)$

Convergence of damped iteration

• suppose that step-sizes satisfy

$$\sum_{k=0}^{\infty} \theta^k (1 - \theta^k) = \infty$$

- example: $\theta_k = \frac{1}{k+1}$
- then we have

$$\min_{j=1,...,k} \|F(x^j) - x^j\|_2 \to 0 \quad \text{and} \quad \min_{j=1,...,k} \operatorname{dist}(x^j, X) \to 0$$

- some iterates yield arbitrarily good approximate fixed points and get close to the fixed point set ${\cal X}$

Example: Proximal Point Method

minimize f(x)

- optimality condition: $0 \in \partial f(x^*) \iff x^* \in x^* + \lambda \partial f(x^*)$
- resolvent fixed point iteration

$$x^{k+1} := R(x^k) = (I + \lambda \partial f)^{-1}(x^k)$$

• this is the Proximal Point Method

$$x^{k+1} := \mathbf{prox}_{f,1/\lambda}(x^k) = \arg\min_x f(x) + \frac{1}{2\lambda} \|x - x^k\|_2^2$$

EE364b, Stanford University

Example: Proximal Gradient Method

 $\begin{array}{ll}\text{minimize} & f(x) + g(x)\\ \text{subject to} & Ax = b \end{array}$

f is smooth

 $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is closed convex proper.

• optimality conditions: $0 \in \nabla f(x^*) + \partial g(x^*)$

 $\bullet\,$ multiply both sides by $\lambda>0$ and add x^* to both sides

$$0 \in \lambda \nabla f(x^*) + \lambda \partial g(x^*)$$
$$x^* - \lambda f(x^*) \in x^* + \lambda \partial g(x^*)$$
$$(I - \lambda \nabla f)(x^*) \in (I + \lambda \partial g))(x^*)$$

- invert the relation: $x^* \in (I + \lambda \partial g)^{-1} (I \lambda \nabla f)(x^*)$
- fixed point equation: (an algorithmic way to check optimality) $x^* = (I + \lambda \partial g)^{-1} (I \lambda \nabla f)(x^*)$
- Proximal Gradient Method as fixed point iteration

$$x^{k+1} = (I + \lambda \partial g)^{-1} (I - \lambda \nabla f)(x^k)$$
$$= \mathbf{prox}_{\lambda g} (x^k - \lambda \nabla f(x^k))$$

Example: Method of Multipliers

• let F be the multiplier to residual mapping for the problem

 $\begin{array}{ll}\text{minimize} & f(x)\\ \text{subject to} & Ax = b \end{array}$

• i.e., F(y) =: b - Ax where $x \in \arg \min_z L(z, y) = f(z) + y^T (Ax - b)$

• resolvent iteration $x^{k+1} := R(x^k) = (I + \lambda F)^{-1}(x^k)$ becomes the **method of multipliers**

$$x^{k+1} = \arg\min_{w} f(w) + (y^{k})^{T} (Aw - b) + \lambda/2 ||Aw - b||_{2}^{2}$$
$$y^{k+1} = y^{k} + \lambda (Ax^{k+1} - b)$$

EE364b, Stanford University

Operator Splitting

minimize f(x) + g(x)

- solve $0 \in \partial f(x) + \partial g(x)$, where $\partial f(x)$ and $\partial g(x)$ are maximal monotone
- using resolvents

$$R_f = (I + \lambda \partial f)^{-1}, \qquad R_g = (I + \lambda \partial g)^{-1}$$

• efficient when proximal operators of f and g are easy to evaluate

Operator Splitting

• optimality condition $0 \in \partial f(x) + \partial g(x)$ holds iff

$$(2R_f - I)(2R_g - I)(z) = z, \quad x = R_g(z)$$

proof:

let
$$x = R_g(z)$$
, $\tilde{z} = (2R_g - I)(z) = 2x - z$
 $\tilde{x} = R_f(\tilde{z})$, $z = (2R_f - I)(\tilde{z}) = 2\tilde{x} - \tilde{z}$

then we have $x = \tilde{x}$.

add $z \in x + \lambda \partial g(x)$ and $\tilde{z} \in x + \lambda \partial f(x)$ to get $z + \tilde{z} \in 2x + \lambda \partial f(x) + \lambda \partial g(x)$ and note that $z + \tilde{z} = 2x$

EE364b, Stanford University

Operator Splitting Methods

• Peaceman-Rachford splitting is fixed point iteration

$$z^{k+1} = (2R_f - I)(2R_g - I)(z^k)$$

converges when one of the operators is a contraction

• **Douglas-Rachford splitting**¹ is damped fixed point iteration

$$z^{k+1} = \frac{1}{2}z^k + \frac{1}{2}(2R_f - I)(2R_g - I)(z^k)$$

always converges when $0 \in \partial f(x) + \partial g(x)$ has a solution

• $C_f := 2R_f - I$ is called the Cayley operator of f

¹Douglas and Rachford, "On the numerical solution of heat conduction problems in 2&3 space variables." Trans. AMS (1956)

Alternating direction method of multipliers

• Douglas-Rachford splitting is

$$\begin{aligned} x' &:= \operatorname*{argmin}_{x} f(x) + \frac{1}{2\lambda} \|x - z^{k}\|_{2}^{2} \\ z' &:= 2x' - z^{k} \\ x^{k+1} &:= \operatorname*{argmin}_{x} g(x) + \frac{1}{2\lambda} \|x - z'\| \\ z^{k+1} &:= z^{k} + x^{k+1} - x' \end{aligned}$$

- a special case of ADMM
- Dykstra's alternating projections when $f=I_C \text{, } g=I_D$ for two convex sets C,D

References

- Large-Scale Convex Optimization via Monotone Operators by Ernest K. Ryu and Wotao Yin
- EE364b lecture notes by Stephen Boyd and Neal Parikh
- EE236C lecture notes by Lieven Vandenberghe