Monotone Operators

- monotone operators
- resolvent
- fixed point iteration
- augmented lagrangian

Relations

- a relation F on a set \mathbf{R}^{n} is a subset of $\mathbf{R}^{n} \times \mathbf{R}^{n}$
- we overload the notation $F(x)$ to mean the set $F(x)=\{y \mid(x, y) \in F\}$
- we can think of F as an operator that maps vectors $x \in \mathbf{R}^{n}$ to sets $F(x) \subseteq \mathbf{R}^{n}$
- the domain and graph of F are defined as

$$
\begin{align*}
\operatorname{dom} F & =\{x \mid \exists y(x, y) \in F\} \tag{1}\\
\operatorname{gr} F & =\left\{(x, y) \in \mathbf{R}^{n} \times \mathbf{R}^{n} \mid x \in \operatorname{dom} F, y \in F(x)\right\} \tag{2}
\end{align*}
$$

- if $F(x)$ is a singleton, we write $F(x)=y$ instead of $F(x)=\{y\}$ and say F is a function
- any function or operator $f: C \rightarrow \mathbf{R}^{n}$ with $C \subseteq \mathbf{R}^{n}$ is a relation. In this case, $f(x)$ is ambiguous since it can mean the value $f(x)$ or the set $\{f(x)\}$

Examples

- empty relation: \emptyset
- full relation: $\mathbf{R}^{n} \times \mathbf{R}^{n}$
- identity: $I:=\left\{(x, x) \mid x \in \mathbf{R}^{n}\right\}$
- zero: $0:=\left\{(x, 0) \mid x \in \mathbf{R}^{n}\right\}$
- unit circle: $\left\{x \in \mathbf{R}^{n} \mid x_{1}^{2}+x_{2}^{2}=1\right\}$
- subdifferential relation: $\partial f=\left\{(x, \partial f(x)) \mid x \in \mathbf{R}^{n}\right\}$

Example: subdifferential of $|x|$

- consider the subdifferential $\partial f(x)$ of the convex function $f(x)=|x|$

$$
F(x)= \begin{cases}-1 & x<0 \\ {[-1,1]} & x=0 \\ 1 & x>0\end{cases}
$$

Operations on relations

- inverse relation: $F^{-1}:=\{(y, x) \mid(x, y) \in F\}$
- composition: $F G:=\{(x, y) \mid \exists z(x, z) \in F,(z, y) \in G\}$
- scalar multiplication: $\alpha F:=\{(x, \alpha y) \mid(x, y) \in F$
- addition $F+G=\{(x, y+z) \mid(x, y) \in F,(x, z) \in G\}$

Example: inverse relation

- consider the subdifferential relation for the convex function $f(x)=|x|$
- $F=\left\{(x, \partial f(x)) \mid x \in \mathbf{R}^{n}\right\}$

Generalized equations

- goal: solve generalized equation $0 \in R(x)$, or equivalently:

$$
\text { find } x \text { s.t. }(x, 0) \in R
$$

- solution set is $X=\{x \in \operatorname{dom} R \mid 0 \in R(x)\}$
- example: if $R=\partial f$ and $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a convex function, then $0 \in R(x)$ means x minimizes f

Monotone operators

- Definition: A relation F is a monotone operator if

$$
(u-v)^{T}(x-y) \geq 0 \quad \text { for all } \quad(x, u),(y, v) \in F
$$

- F is maximal monotone if there is no monotone operator that properly contains it
- solving generalized equations with maximal monotone operators capture many problems in convex optimization

Maximal monotone operators on \mathbf{R}

F is maximal monotone iff it is a connected curve with no endpoints, with nonnegative slope

Examples

Basic properties

suppose F and G are monotone operators

- sum: $F+G$ is monotone
- nonnegative scaling: αF is monotone if $\alpha \geq 0$
- inverse: F^{-1} is monotone
- congruence: for $A \in \mathbf{R}^{n \times m}, A^{T} F(A z)$ is monotone
- zero set: $\left\{x \in \mathbf{R}^{n} \mid 0 \in F(x)\right\}$ is convex if F is maximal monotone
- the affine function $F(x)=A x+b$ is monotone iff $A+A^{T} \succeq 0$

Subdifferential

$F(x)=\partial f(x)$ is monotone

- suppose $u \in \partial f(x)$ and $v \in \partial f(y)$
- write the subgradient inequality to obtain

$$
0 \leq(u-v)^{T}(x-y)
$$

- if f is closed convex proper (CCP) then $F(x)=\partial f(x)$ is maximal monotone

Subdifferential of conjugate

If f is CCP, we have

$$
(\partial f)^{-1}=\partial f^{*}
$$

Proof:

$$
\begin{aligned}
u \in \partial f(x) & \Longleftrightarrow 0 \in \partial f(x)-u \\
& \Longleftrightarrow x \in \arg \min _{z} f(z)-u^{T} z \\
& \Longleftrightarrow-f(x)+u^{T} x=f^{*}(u) \\
& \Longleftrightarrow f(x)+f^{*}(u)=u^{T} x \\
& \Longleftrightarrow x \in \partial f^{*}(u)
\end{aligned}
$$

Resolvent of an operator

- for a relation R and $\lambda \in \mathbf{R}$, resolvent is the relation

$$
S:=(I+\lambda R)^{-1}
$$

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in F\}$
- $S=(I+\lambda R)^{-1}=\{(x+\lambda y, x) \mid(x, y) \in R\}$
- for $\lambda \neq 0$, we have the equivalent expression

$$
S=\{(u, v) \mid(u-v) / \lambda \in R(v)\}
$$

Resolvent of subdifferential operator: Proximal mapping

- let $z=(I+\lambda \partial f)^{-1}(x)$ for some $\lambda>0$ and convex f
- implies that $x \in z+\lambda \partial f(z)$
- which is same as

$$
0 \in \partial_{z} f(z)+\frac{1}{2 \lambda}\|z-x\|_{2}^{2}
$$

- equivalently

$$
z=\arg \min _{u} f(u)+\frac{1}{2 \lambda}\|u-x\|_{2}^{2}
$$

- i.e., $z=\operatorname{prox}_{\lambda f}(x)$
- example: resolvent of the subdifferential of $f(x)=|x|$

Example: Indicator Function

- let $f=I_{C}$, indicator function of convex set C
- ∂f is the normal cone operator

$$
N_{C}(x):= \begin{cases}\emptyset & x \notin C \\ \left\{w \mid w^{T}(z-x) \leq 0 \forall z \in C\right\} & x \in C\end{cases}
$$

- proximal operator of f (i.e., resolvent of N_{C}) is

$$
\left(I+\lambda \partial I_{C}\right)^{-1}(x)=\arg \min _{u} I_{C}(u)+\frac{1}{2 \lambda}\|u-x\|_{2}^{2}=\Pi_{C}(x)
$$

- where $\Pi_{C}(x)$ is Euclidean projection onto C

KKT operator

consider the equality constrained convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- Lagrangian $L(x, y)=f(x)+y^{T}(A x-b)$.
- associated KKT operator on $\mathbf{R}^{n} \times \mathbf{R}^{m}$

$$
F(x, y)=\left[\begin{array}{c}
\partial_{x} L(x, y) \\
-\partial_{y} L(x, y)
\end{array}\right]=\left[\begin{array}{c}
\partial f(x)+A^{T} y \\
b-A x
\end{array}\right]=\left[\begin{array}{c}
r^{\text {dual }} \\
-r^{\text {primal }}
\end{array}\right]
$$

- zero set of F is the set of primal-dual optimal points (saddle points of L)
- KKT operator is monotone: sum of monotone operators

$$
F(x, y)=\left[\begin{array}{c}
\partial f(x) \\
b
\end{array}\right]+\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Resolvent of multiplier to residual map

- consider F : multiplier to residual mapping for the convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- $F(y):=b-A x$ where $x \in \arg \min _{w} L(w, y)=f(w)+y^{T}(A x-b)$
- $z=(I+\lambda F)^{-1}(y)$ implies $y \in z+\lambda F(z)$
- i.e., $z+\lambda(b-A x)=y$ for some $x \in \arg \min _{w} L(w, z)$
- can be rewritten as

$$
z=y+\lambda(A x-b), \quad 0 \in \partial f(x)+A^{T} z
$$

Resolvent of multiplier to residual map

- rewrite second term as $0 \in \partial f(x)+A^{T} y+\lambda A^{T}(A x-b)$, or

$$
x \in \arg \min _{w} f(w)+y^{T}(A w-b)+\lambda / 2\|A w-b\|_{2}^{2}
$$

- to summarize, the resolvent $z=R(y)$ can be found via

$$
\begin{aligned}
& x=\arg \min _{w} f(w)+y^{T}(A w-b)+\lambda / 2\|A w-b\|_{2}^{2} \\
& z=y+\lambda(A x-b)
\end{aligned}
$$

- we recover the augmented Lagrangian

Nonexpansive and contractive operators

- An operator F has Lipschitz constant L if

$$
\|F(x)-F(y)\|_{2} \leq L\|x-y\|_{2} \quad \text { for all } x, y \in \operatorname{dom} F
$$

- if F is Lipschitz, then it is single valued since $\|F(x)-F(x)\|_{2} \leq 0$
- if $L=1$, we say F is nonexpansive
- if $L<1$, we say F is contraction with factor L

Properties

- if F and G have Lipschitz constant L,

$$
\theta F+(1-\theta) G, \quad \theta \in[0,1]
$$

also has Lipschitz constant L

- composition of nonexpansive operators is nonexpansive
- composition of nonexpansive operator and contraction is contraction
- when $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is nonexpansive, its set of fixed points $\{x \mid F(x)=x\}$ is convex (can be empty)
- a contraction has a single fixed point

Nonexpansiveness of the resolvent

- for $\lambda \in \mathbf{R}$, resolvent of relation F is

$$
R=(I+\lambda F)^{-1}
$$

- when $\lambda \geq 0$ and F monotone, R is nonexpansive, hence single-valued
- when $\lambda \geq 0$ and F maximal monotone, $\operatorname{dom} R=\mathbf{R}^{n}$

Fixed Point Iterations

Banach fixed point theorem:

- suppose that F is a contraction with Lipschitz constant $L<1$ and $\operatorname{dom} F=\mathbf{R}^{n}$
- then, the iteration

$$
x^{k+1}:=F\left(x^{k}\right)
$$

converges to the unique fixed point of F

Example: Gradient Descent with constant step-size

- assume f is strongly convex and ∇f is Lipschitz, i.e.,

$$
m I \preceq \nabla^{2} f(x) \preceq L I
$$

- gradient descent method is $x^{k+1}:=x^{k}-\alpha \nabla f\left(x^{k}\right)=F\left(x^{k}\right)$
- fixed points are solutions of $F(x)=x$
- $D F(x)=I-\alpha \nabla^{2} f(x)$
- F is Lipschitz with parameter $\max \{|1-\alpha m|,|1-\alpha L|\}$
- F is a contraction when $0<\alpha<2 / L$, hence gradient descent converges (geometrically) when $0<\alpha<2 / L$

Damped iteration of a nonexpansive operator

- suppose F is nonexpansive, $\operatorname{dom} F=\mathbf{R}^{n}$, with fixed point set $X=\{x \mid F(x)=x\}$
- simple fixed point iteration of F may not converge (e.g., rotation)
- damped iteration:

$$
x^{k+1}:=\left(1-\theta^{k}\right) x^{k}+\theta^{k} F\left(x^{k}\right)
$$

- step-sizes $\theta^{k} \in(0,1)$

Convergence of damped iteration

- suppose that step-sizes satisfy

$$
\sum_{k=0}^{\infty} \theta^{k}\left(1-\theta^{k}\right)=\infty
$$

- example: $\theta_{k}=\frac{1}{k+1}$
- then we have

$$
\min _{j=1, \ldots, k}\left\|F\left(x^{j}\right)-x^{j}\right\|_{2} \rightarrow 0 \quad \text { and } \min _{j=1, \ldots, k} \operatorname{dist}\left(x^{j}, X\right) \rightarrow 0
$$

- some iterates yield arbitrarily good approximate fixed points and get close to the fixed point set X

Example: Proximal Point Method

$$
\operatorname{minimize} \quad f(x)
$$

- optimality condition: $0 \in \partial f\left(x^{*}\right) \Longleftrightarrow x^{*} \in x^{*}+\lambda \partial f\left(x^{*}\right)$
- resolvent fixed point iteration

$$
x^{k+1}:=R\left(x^{k}\right)=(I+\lambda \partial f)^{-1}\left(x^{k}\right)
$$

- this is the Proximal Point Method

$$
x^{k+1}:=\operatorname{prox}_{f, 1 / \lambda}\left(x^{k}\right)=\arg \min _{x} f(x)+\frac{1}{2 \lambda}\left\|x-x^{k}\right\|_{2}^{2}
$$

Example: Proximal Gradient Method

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)+g(x) \\
\text { subject to } & A x=b
\end{array}
$$

f is smooth
$g: R^{n} \rightarrow R \cup\{+\infty\}$ is closed convex proper.

- optimality conditions: $0 \in \nabla f\left(x^{*}\right)+\partial g\left(x^{*}\right)$
- multiply both sides by $\lambda>0$ and add x^{*} to both sides

$$
\begin{aligned}
0 & \in \lambda \nabla f\left(x^{*}\right)+\lambda \partial g\left(x^{*}\right) \\
x^{*}-\lambda f\left(x^{*}\right) & \in x^{*}+\lambda \partial g\left(x^{*}\right) \\
(I-\lambda \nabla f)\left(x^{*}\right) & \in(I+\lambda \partial g))\left(x^{*}\right)
\end{aligned}
$$

- invert the relation: $x^{*} \in(I+\lambda \partial g)^{-1}(I-\lambda \nabla f)\left(x^{*}\right)$
- fixed point equation: (an algorithmic way to check optimality) $x^{*}=(I+\lambda \partial g)^{-1}(I-\lambda \nabla f)\left(x^{*}\right)$
- Proximal Gradient Method as fixed point iteration

$$
\begin{aligned}
x^{k+1} & =(I+\lambda \partial g)^{-1}(I-\lambda \nabla f)\left(x^{k}\right) \\
& =\operatorname{prox}_{\lambda g}\left(x^{k}-\lambda \nabla f\left(x^{k}\right)\right)
\end{aligned}
$$

Example: Method of Multipliers

- let F be the multiplier to residual mapping for the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- i.e., $F(y)=: b-A x$ where $x \in \arg \min _{z} L(z, y)=f(z)+y^{T}(A x-b)$
- resolvent iteration $x^{k+1}:=R\left(x^{k}\right)=(I+\lambda F)^{-1}\left(x^{k}\right)$ becomes the method of multipliers

$$
\begin{aligned}
& x^{k+1}=\arg \min _{w} f(w)+\left(y^{k}\right)^{T}(A w-b)+\lambda / 2\|A w-b\|_{2}^{2} \\
& y^{k+1}=y^{k}+\lambda\left(A x^{k+1}-b\right)
\end{aligned}
$$

Operator Splitting

$$
\operatorname{minimize} \quad f(x)+g(x)
$$

- solve $0 \in \partial f(x)+\partial g(x)$, where $\partial f(x)$ and $\partial g(x)$ are maximal monotone
- using resolvents

$$
R_{f}=(I+\lambda \partial f)^{-1}, \quad R_{g}=(I+\lambda \partial g)^{-1}
$$

- efficient when proximal operators of f and g are easy to evaluate

Operator Splitting

- optimality condition $0 \in \partial f(x)+\partial g(x)$ holds iff

$$
\left(2 R_{f}-I\right)\left(2 R_{g}-I\right)(z)=z, \quad x=R_{g}(z)
$$

proof:
let $x=R_{g}(z), \quad \tilde{z}=\left(2 R_{g}-I\right)(z)=2 x-z$

$$
\tilde{x}=R_{f}(\tilde{z}), \quad z=\left(2 R_{f}-I\right)(\tilde{z})=2 \tilde{x}-\tilde{z}
$$

then we have $x=\tilde{x}$.
add $z \in x+\lambda \partial g(x)$ and $\tilde{z} \in x+\lambda \partial f(x)$ to get
$z+\tilde{z} \in 2 x+\lambda \partial f(x)+\lambda \partial g(x)$ and note that $z+\tilde{z}=2 x$

Operator Splitting Methods

- Peaceman-Rachford splitting is fixed point iteration

$$
z^{k+1}=\left(2 R_{f}-I\right)\left(2 R_{g}-I\right)\left(z^{k}\right)
$$

converges when one of the operators is a contraction

- Douglas-Rachford splitting ${ }^{1}$ is damped fixed point iteration

$$
z^{k+1}=\frac{1}{2} z^{k}+\frac{1}{2}\left(2 R_{f}-I\right)\left(2 R_{g}-I\right)\left(z^{k}\right)
$$

always converges when $0 \in \partial f(x)+\partial g(x)$ has a solution

- $C_{f}:=2 R_{f}-I$ is called the Cayley operator of f

[^0]
Alternating direction method of multipliers

- Douglas-Rachford splitting is

$$
\begin{aligned}
x^{\prime} & :=\underset{x}{\operatorname{argmin}} f(x)+\frac{1}{2 \lambda}\left\|x-z^{k}\right\|_{2}^{2} \\
z^{\prime} & :=2 x^{\prime}-z^{k} \\
x^{k+1} & :=\underset{x}{\operatorname{argmin}} g(x)+\frac{1}{2 \lambda}\left\|x-z^{\prime}\right\| \\
z^{k+1} & :=z^{k}+x^{k+1}-x^{\prime}
\end{aligned}
$$

- a special case of ADMM
- Dykstra's alternating projections when $f=I_{C}, g=I_{D}$ for two convex sets C, D

References

- Large-Scale Convex Optimization via Monotone Operators by Ernest K. Ryu and Wotao Yin
- EE364b lecture notes by Stephen Boyd and Neal Parikh
- EE236C lecture notes by Lieven Vandenberghe

[^0]: ${ }^{1}$ Douglas and Rachford, "On the numerical solution of heat conduction problems in $2 \& 3$ space variables." Trans. AMS (1956)

