
Monotone Operators

• monotone operators

• resolvent

• fixed point iteration

• augmented lagrangian

EE364b, Stanford University Prof. Mert Pilanci updated: May 8, 2022



Relations

• a relation F on a set Rn is a subset of Rn × Rn

• we overload the notation F (x) to mean the set F (x) = {y | (x, y) ∈ F}

• we can think of F as an operator that maps vectors x ∈ Rn to sets
F (x) ⊆ Rn

• the domain and graph of F are defined as

domF = {x | ∃y (x, y) ∈ F} (1)

grF = {(x, y) ∈ Rn × Rn |x ∈ domF, y ∈ F (x)} (2)
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• if F (x) is a singleton, we write F (x) = y instead of F (x) = {y} and
say F is a function

• any function or operator f : C → Rn with C ⊆ Rn is a relation. In this
case, f(x) is ambiguous since it can mean the value f(x) or the set
{f(x)}
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Examples

• empty relation: ∅

• full relation: Rn × Rn

• identity: I := {(x, x) |x ∈ Rn}

• zero: 0 := {(x, 0) |x ∈ Rn}

• unit circle: {x ∈ Rn |x21 + x22 = 1}

• subdifferential relation: ∂f = {(x, ∂f(x)) |x ∈ Rn}

EE364b, Stanford University 3



Example: subdifferential of |x|

• consider the subdifferential ∂f(x) of the convex function f(x) = |x|

F (x) =


−1 x < 0

[−1, 1] x = 0

1 x > 0

EE364b, Stanford University 4



Operations on relations

• inverse relation: F−1 := {(y, x) | (x, y) ∈ F}

• composition: FG := {(x, y) | ∃z (x, z) ∈ F, (z, y) ∈ G}

• scalar multiplication: αF := {(x, αy) | (x, y) ∈ F

• addition F +G = {(x, y + z) | (x, y) ∈ F, (x, z) ∈ G}
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Example: inverse relation

• consider the subdifferential relation for the convex function f(x) = |x|

• F = {(x, ∂f(x)) |x ∈ Rn}
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Generalized equations

• goal: solve generalized equation 0 ∈ R(x), or equivalently:

findx s.t. (x, 0) ∈ R

• solution set is X = {x ∈ domR | 0 ∈ R(x)}

• example: if R = ∂f and f : Rn → Rn is a convex function, then
0 ∈ R(x) means x minimizes f

EE364b, Stanford University 7



Monotone operators

• Definition: A relation F is a monotone operator if

(u− v)T (x− y) ≥ 0 for all (x, u), (y, v) ∈ F

• F is maximal monotone if there is no monotone operator that properly
contains it

• solving generalized equations with maximal monotone operators capture
many problems in convex optimization
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Maximal monotone operators on R

F is maximal monotone iff it is a connected curve with no endpoints, with
nonnegative slope

monotone
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Examples

non-monotone monotone but not maximal
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Basic properties

suppose F and G are monotone operators

• sum: F +G is monotone

• nonnegative scaling: αF is monotone if α ≥ 0

• inverse: F−1 is monotone

• congruence: for A ∈ Rn×m,ATF (Az) is monotone

• zero set: {x ∈ Rn | 0 ∈ F (x)} is convex if F is maximal monotone

• the affine function F (x) = Ax+ b is monotone iff A+AT � 0
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Subdifferential

F (x) = ∂f(x) is monotone

• suppose u ∈ ∂f(x) and v ∈ ∂f(y)

• write the subgradient inequality to obtain

0 ≤ (u− v)T (x− y)

• if f is closed convex proper (CCP) then F (x) = ∂f(x) is maximal
monotone
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Subdifferential of conjugate

If f is CCP, we have
(∂f)−1 = ∂f∗

Proof:

u ∈ ∂f(x) ⇐⇒ 0 ∈ ∂f(x)− u

⇐⇒ x ∈ arg min
z
f(z)− uTz

⇐⇒ −f(x) + uTx = f∗(u)

⇐⇒ f(x) + f∗(u) = uTx

⇐⇒ x ∈ ∂f∗(u)
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Resolvent of an operator

• for a relation R and λ ∈ R, resolvent is the relation

S := (I + λR)−1

• I + λR = {(x, x+ λy) | (x, y) ∈ F}

• S = (I + λR)−1 = {(x+ λy, x) | (x, y) ∈ R}

• for λ 6= 0, we have the equivalent expression

S = {(u, v) | (u− v)/λ ∈ R(v)}
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Resolvent of subdifferential operator: Proximal mapping

• let z = (I + λ∂f)−1(x) for some λ > 0 and convex f

• implies that x ∈ z + λ∂f(z)

• which is same as

0 ∈ ∂zf(z) +
1

2λ
‖z − x‖22

• equivalently

z = arg min
u
f(u) +

1

2λ
‖u− x‖22

• i.e., z = proxλf(x)

• example: resolvent of the subdifferential of f(x) = |x|
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Example: Indicator Function

• let f = IC, indicator function of convex set C

• ∂f is the normal cone operator

NC(x) :=

{
∅ x /∈ C
{w |wT (z − x) ≤ 0 ∀z ∈ C} x ∈ C

• proximal operator of f (i.e., resolvent of NC) is

(I + λ∂IC)−1(x) = arg min
u
IC(u) +

1

2λ
‖u− x‖22 = ΠC(x)

• where ΠC(x) is Euclidean projection onto C
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KKT operator

consider the equality constrained convex problem

minimize f(x)

subject to Ax = b

• Lagrangian L(x, y) = f(x) + yT (Ax− b).

• associated KKT operator on Rn × Rm

F (x, y) =

[
∂xL(x, y)
−∂yL(x, y)

]
=

[
∂f(x) +ATy

b−Ax

]
=

[
rdual

−rprimal

]

• zero set of F is the set of primal-dual optimal points (saddle points of L)
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• KKT operator is monotone: sum of monotone operators

F (x, y) =

[
∂f(x)
b

]
+

[
0 AT

−A 0

] [
x
y

]
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Resolvent of multiplier to residual map

• consider F : multiplier to residual mapping for the convex problem

minimize f(x)

subject to Ax = b

• F (y) := b−Ax where x ∈ arg minw L(w, y) = f(w) + yT (Ax− b)

• z = (I + λF )−1(y) implies y ∈ z + λF (z)

• i.e., z + λ(b−Ax) = y for some x ∈ arg minw L(w, z)

• can be rewritten as

z = y + λ(Ax− b), 0 ∈ ∂f(x) +ATz
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Resolvent of multiplier to residual map

• rewrite second term as 0 ∈ ∂f(x) +ATy + λAT (Ax− b), or

x ∈ arg min
w
f(w) + yT (Aw − b) + λ/2‖Aw − b‖22

• to summarize, the resolvent z = R(y) can be found via

x = arg min
w
f(w) + yT (Aw − b) + λ/2‖Aw − b‖22

z = y + λ(Ax− b)

• we recover the augmented Lagrangian
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Nonexpansive and contractive operators

• An operator F has Lipschitz constant L if

‖F (x)− F (y)‖2 ≤ L‖x− y‖2 for all x, y ∈ domF

• if F is Lipschitz, then it is single valued since ‖F (x)− F (x)‖2 ≤ 0

• if L = 1, we say F is nonexpansive

• if L < 1, we say F is contraction with factor L
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Properties

• if F and G have Lipschitz constant L,

θF + (1− θ)G, θ ∈ [0, 1]

also has Lipschitz constant L

• composition of nonexpansive operators is nonexpansive

• composition of nonexpansive operator and contraction is contraction

• when F : Rn → Rn is nonexpansive, its set of fixed points
{x |F (x) = x} is convex (can be empty)

• a contraction has a single fixed point
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Nonexpansiveness of the resolvent

• for λ ∈ R, resolvent of relation F is

R = (I + λF )−1

• when λ ≥ 0 and F monotone, R is nonexpansive, hence single-valued

• when λ ≥ 0 and F maximal monotone, domR = Rn
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Fixed Point Iterations

Banach fixed point theorem:

• suppose that F is a contraction with Lipschitz constant L < 1 and
domF = Rn

• then, the iteration
xk+1 := F (xk)

converges to the unique fixed point of F
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Example: Gradient Descent with constant step-size

• assume f is strongly convex and ∇f is Lipschitz, i.e.,

mI � ∇2f(x) � LI

• gradient descent method is xk+1 := xk − α∇f(xk) = F (xk)

• fixed points are solutions of F (x) = x

• DF (x) = I − α∇2f(x)

• F is Lipschitz with parameter max{|1− αm|, |1− αL|}

• F is a contraction when 0 < α < 2/L, hence gradient descent
converges (geometrically) when 0 < α < 2/L
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Damped iteration of a nonexpansive operator

• suppose F is nonexpansive, domF = Rn, with fixed point set
X = {x |F (x) = x}

• simple fixed point iteration of F may not converge (e.g., rotation)

• damped iteration:

xk+1 := (1− θk)xk + θkF (xk)

• step-sizes θk ∈ (0, 1)
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Convergence of damped iteration

• suppose that step-sizes satisfy

∞∑
k=0

θk(1− θk) =∞

• example: θk = 1
k+1

• then we have

min
j=1,...,k

‖F (xj)− xj‖2 → 0 and min
j=1,...,k

dist(xj, X)→ 0

• some iterates yield arbitrarily good approximate fixed points and get
close to the fixed point set X
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Example: Proximal Point Method

minimize f(x)

• optimality condition: 0 ∈ ∂f(x∗) ⇐⇒ x∗ ∈ x∗ + λ∂f(x∗)

• resolvent fixed point iteration

xk+1 := R(xk) = (I + λ∂f)−1(xk)

• this is the Proximal Point Method

xk+1 := proxf,1/λ(xk) = arg min
x
f(x) +

1

2λ
‖x− xk‖22
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Example: Proximal Gradient Method

minimize f(x) + g(x)

subject to Ax = b

f is smooth

g : Rn → R ∪ {+∞} is closed convex proper.

• optimality conditions: 0 ∈ ∇f(x∗) + ∂g(x∗)
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• multiply both sides by λ > 0 and add x∗ to both sides

0 ∈ λ∇f(x∗) + λ∂g(x∗)

x∗ − λf(x∗) ∈ x∗ + λ∂g(x∗)

(I − λ∇f)(x∗) ∈ (I + λ∂g))(x∗)

• invert the relation: x∗ ∈ (I + λ∂g)−1(I − λ∇f)(x∗)

• fixed point equation: (an algorithmic way to check optimality)
x∗ = (I + λ∂g)−1(I − λ∇f)(x∗)

• Proximal Gradient Method as fixed point iteration

xk+1 = (I + λ∂g)−1(I − λ∇f)(xk)

= proxλg(x
k − λ∇f(xk))
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Example: Method of Multipliers

• let F be the multiplier to residual mapping for the problem

minimize f(x)

subject to Ax = b

• i.e., F (y) =: b−Ax where x ∈ arg minz L(z, y) = f(z) + yT (Ax− b)

• resolvent iteration xk+1 := R(xk) = (I + λF )−1(xk) becomes the
method of multipliers

xk+1 = arg min
w
f(w) + (yk)

T
(Aw − b) + λ/2‖Aw − b‖22

yk+1 = yk + λ(Axk+1 − b)
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Operator Splitting

minimize f(x) + g(x)

• solve 0 ∈ ∂f(x) + ∂g(x), where ∂f(x) and ∂g(x) are maximal
monotone

• using resolvents

Rf = (I + λ∂f)−1, Rg = (I + λ∂g)−1

• efficient when proximal operators of f and g are easy to evaluate
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Operator Splitting

• optimality condition 0 ∈ ∂f(x) + ∂g(x) holds iff

(2Rf − I)(2Rg − I)(z) = z, x = Rg(z)

proof:

let x = Rg(z), z̃ = (2Rg − I)(z) = 2x− z

x̃ = Rf(z̃), z = (2Rf − I)(z̃) = 2x̃− z̃

then we have x = x̃.

add z ∈ x+ λ∂g(x) and z̃ ∈ x+ λ∂f(x) to get

z + z̃ ∈ 2x+ λ∂f(x) + λ∂g(x) and note that z + z̃ = 2x
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Operator Splitting Methods

• Peaceman-Rachford splitting is fixed point iteration

zk+1 = (2Rf − I)(2Rg − I)(zk)

converges when one of the operators is a contraction

• Douglas-Rachford splitting1 is damped fixed point iteration

zk+1 =
1

2
zk +

1

2
(2Rf − I)(2Rg − I)(zk)

always converges when 0 ∈ ∂f(x) + ∂g(x) has a solution

• Cf := 2Rf − I is called the Cayley operator of f

1
Douglas and Rachford, “On the numerical solution of heat conduction problems in 2&3 space variables.” Trans. AMS (1956)
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Alternating direction method of multipliers

• Douglas-Rachford splitting is

x′ := argmin
x

f(x) +
1

2λ
‖x− zk‖22

z′ := 2x′ − zk

xk+1 := argmin
x

g(x) +
1

2λ
‖x− z′‖

zk+1 := zk + xk+1 − x′

• a special case of ADMM

• Dykstra’s alternating projections when f = IC, g = ID for two convex
sets C,D
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