Monotone Operators

Stephen Boyd (with help from Neal Parikh)
EE364b, Stanford University

Outline

(1) Relations
(2) Monotone operators
(3) Nonexpansive and contractive operators
(4) Resolvent and Cayley operator
(5) Fixed point iterations
(6) Proximal point algorithm and method of multipliers

Relations

Relations

- a relation R on a set \mathbf{R}^{n} is a subset of $\mathbf{R}^{n} \times \mathbf{R}^{n}$
- $\operatorname{dom} R=\{x \mid \exists y(x, y) \in R\}$
- overload $R(x)$ to mean the set $R(x)=\{y \mid(x, y) \in R\}$
- can think of R as 'set-valued mapping', i.e., from $\operatorname{dom} R$ into $2^{\mathbf{R}^{n}}$
- when $R(x)$ is always empty or a singleton, we say R is a function
- any function (or operator) $f: C \rightarrow \mathbf{R}^{n}$ with $C \subseteq \mathbf{R}^{n}$ is a relation ($f(x)$ is then ambiguous: it can mean $f(x)$ or $\{f(x)\}$)

Examples

- empty relation: \emptyset
- full relation: $\mathbf{R}^{n} \times \mathbf{R}^{n}$
- identity: $I=\left\{(x, x) \mid x \in \mathbf{R}^{n}\right\}$
- zero: $0=\left\{(x, 0) \mid x \in \mathbf{R}^{n}\right\}$
- $\left\{x \in \mathbf{R}^{2} \mid x_{1}^{2}+x_{2}^{2}=1\right\}$
- $\left\{x \in \mathbf{R}^{2} \mid x_{1} \leq x_{2}\right\}$
- subdifferential relation: $\partial f=\left\{(x, \partial f(x)) \mid x \in \mathbf{R}^{n}\right\}$

Operations on relations

- inverse (relation): $R^{-1}=\{(y, x) \mid(x, y) \in R\}$
- inverse exists for any relation
- coincides with inverse function, when inverse function exists
- composition: $R S=\{(x, y) \mid \exists z(x, z) \in S,(z, y) \in R\}$
- scalar multiplication: $\alpha R=\{(x, \alpha y) \mid(x, y) \in R\}$
- addition: $R+S=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$

Example: Resolvent of operator

for relation R and $\lambda \in \mathbf{R}$, resolvent (much more on this later) is relation

$$
S=(I+\lambda R)^{-1}
$$

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$
- $S=(I+\lambda R)^{-1}=\{(x+\lambda y, x) \mid(x, y) \in R\}$
- for $\lambda \neq 0, S=\{(u, v) \mid(u-v) / \lambda \in R(v)\}$

Generalized equations

- goal: solve generalized equation $0 \in R(x)$
- i.e., find $x \in \mathbf{R}^{n}$ with $(x, 0) \in R$
- solution set or zero set is $X=\{x \in \operatorname{dom} R \mid 0 \in R(x)\}$
- if $R=\partial f$ and $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, then $0 \in R(x)$ means x minimizes f

Outline

(1) Relations
(2) Monotone operators
(3) Nonexpansive and contractive operators
(4) Resolvent and Cayley operator
(5) Fixed point iterations
(6) Proximal point algorithm and method of multipliers

Monotone operators

Monotone operators

- relation F on \mathbf{R}^{n} is monotone if

$$
(u-v)^{T}(x-y) \geq 0 \quad \text { for all }(x, u), \quad(y, v) \in F
$$

- F is maximal monotone if there is no monotone operator that properly contains it
- we'll be informal (i.e., sloppy) about maximality, other analysis issues
- solving generalized equations with maximal monotone operators subsumes many useful problems

Maximal monotone operators on \mathbf{R}

F is maximal monotone iff it is a connected curve with no endpoints, with nonnegative (or infinite) slope

Some basic properties

suppose F and G are monotone

- sum: $F+G$ is monotone
- nonnegative scaling: if $\alpha \geq 0$, then αF is monotone
- inverse: F^{-1} is monotone
- congruence: for $T \in \mathbf{R}^{n \times m}, T^{T} F(T z)$ is monotone (on \mathbf{R}^{m})
- zero set: $\left\{x \in \mathbf{R}^{n} \mid 0 \in F(x)\right\}$ is convex if F is maximal monotone
affine function $F(x)=A x+b$ is monotone iff $A+A^{T} \succeq 0$

Subdifferential

$F(x)=\partial f(x)$ is monotone

- suppose $u \in \partial f(x)$ and $v \in \partial f(y)$
- then

$$
f(y) \geq f(x)+u^{T}(y-x), \quad f(x) \geq f(y)+v^{T}(x-y)
$$

- add these and cancel $f(y)+f(x)$ to get

$$
0 \leq(u-v)^{T}(x-y)
$$

if f is convex closed proper (CCP) then $F(x)=\partial f(x)$ is maximal monotone

KKT operator

- equality-constrained convex problem (with $A \in \mathbf{R}^{m \times n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

with Lagrangian $L(x, y)=f(x)+y^{T}(A x-b)$

- associated $K K T$ operator on $\mathbf{R}^{n} \times \mathbf{R}^{m}$:

$$
F(x, y)=\left[\begin{array}{c}
\partial_{x} L(x, y) \\
-\partial_{y} L(x, y)
\end{array}\right]=\left[\begin{array}{c}
\partial f(x)+A^{T} y \\
b-A x
\end{array}\right]=\left[\begin{array}{c}
r^{\text {dual }} \\
-r^{\text {pri }}
\end{array}\right]
$$

- zero set of F is set of primal-dual optimal points (saddle points of L)
- KKT operator is monotone: write as sum of monotone operators

$$
F(x, y)=\left[\begin{array}{c}
\partial f(x) \\
b
\end{array}\right]+\left[\begin{array}{cc}
0 & A^{T} \\
-A & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Multiplier to residual mapping

- same equality-constrained convex problem
- define $F(y)=b-A x$ with $x \in \operatorname{argmin}_{z} L(z, y)$ (can be set-valued)
- $-F(y)$ is primal residual obtained from dual variable y
- interpretation: $F(y)=\partial(-g)(y)$, where g is dual function
- zero set is set of dual optimal points
- multiplier to residual mapping F is monotone
- quick proof: $F(y)=b-A(\partial f)^{-1}\left(-A^{T} y\right)$ (or use $F(y)=\partial(-g)(y)$)

Outline

(1) Relations

(2) Monotone operators
(3) Nonexpansive and contractive operators
(4) Resolvent and Cayley operator
(5) Fixed point iterations
(6) Proximal point algorithm and method of multipliers

Nonexpansive and contractive operators

Nonexpansive and contractive operators

- F has Lipschitz constant L if

$$
\|F(x)-F(y)\|_{2} \leq L\|x-y\|_{2} \quad \text { for all } x, y \in \operatorname{dom} F
$$

- for $L=1$, we say F is nonexpansive
- for $L<1$, we say F is a contraction (with contraction factor L)

Properties

- if F and G have Lipschitz constant L, so does

$$
\theta F+(1-\theta) G, \quad \theta \in[0,1]
$$

- composition of nonexpansive operators is nonexpansive
- composition of nonexpansive operator and contraction is contraction
- fixed point set of nonexpansive F (with $\operatorname{dom} f=\mathbf{R}^{n}$)

$$
\{x \mid F(x)=x\}
$$

is convex (but can be empty)

- a contraction has a single fixed point (more later)

Outline

(1) Relations

(2) Monotone operators
(3) Nonexpansive and contractive operators
(4) Resolvent and Cayley operator
(5) Fixed point iterations
(6) Proximal point algorithm and method of multipliers

Resolvent and Cayley operator

Resolvent and Cayley operator

- for $\lambda \in \mathbf{R}$, resolvent of relation F is

$$
R=(I+\lambda F)^{-1}
$$

- when $\lambda \geq 0$ and F monotone, R is nonexpansive (thus a function)
- when $\lambda \geq 0$ and F maximal monotone, $\operatorname{dom} R=\mathbf{R}^{n}$
- Cayley operator of F is

$$
C=2 R-I=2(I+\lambda F)^{-1}-I
$$

- when $\lambda \geq 0$ and F monotone, C is nonexpansive
- we write R_{F} and C_{F} to explicitly show dependence on F

Proof that C is nonexpansive

assume $\lambda>0$ and F monotone

- suppose $(x, u) \in R$ and $(y, v) \in R$, i.e.,

$$
u+\lambda F(u) \ni x, \quad v+\lambda F(v) \ni y
$$

- subtract to get $u-v+\lambda(F(u)-F(v)) \ni x-y$
- multiply by $(u-v)^{T}$ and use monotonicity of F to get

$$
\|u-v\|_{2}^{2} \leq(x-y)^{T}(u-v)
$$

- so when $x=y$, we must have $u=v$ (i.e., R is a function)

Proof (continued)

- now let's show C is nonexpansive:

$$
\begin{aligned}
\|C(x)-C(y)\|_{2}^{2} & =\|(2 u-x)-(2 v-y)\|_{2}^{2} \\
& =\|2(u-v)-(x-y)\|_{2}^{2} \\
& =4\|u-v\|_{2}^{2}-4(u-v)^{T}(x-y)+\|x-y\|_{2}^{2} \\
& \leq\|x-y\|_{2}^{2}
\end{aligned}
$$

using inequality above

- R is nonexpansive since it is the average of I and C :

$$
R=(1 / 2) I+(1 / 2)(2 R-I)
$$

Example: Linear operators

- linear mapping $F(x)=A x$ is
- monotone iff $A+A^{T} \succeq 0$
- nonexpansive iff $\|A\|_{2} \leq 1$
- $\lambda \geq 0$ and $A+A^{T} \succeq 0 \Longrightarrow$
- $I+\lambda A$ nonsingular
- $\left\|R_{A}\right\|_{2}=\left\|(I+\lambda A)^{-1}\right\|_{2} \leq 1$
- $\left\|C_{A}\right\|_{2}=\left\|2(I+\lambda A)^{-1}-I\right\|_{2} \leq 1$
- for matrix case, we have alternative formula for Cayley operator:

$$
2(I+\lambda A)^{-1}-I=(I+\lambda A)^{-1}(I-\lambda A)
$$

cf. bilinear function $\frac{1-\lambda a}{1+\lambda a}$, which maps

$$
\{s \in \mathbf{C} \mid \Re s \geq 0\} \quad \text { into } \quad\{s \in \mathbf{C}||s| \leq 1\}
$$

Resolvent of subdifferential: Proximal mapping

- suppose $z=(I+\lambda \partial f)^{-1}(x)$, with $\lambda>0, f$ convex
- this means $z+\lambda \partial f(z) \ni x$
- rewrite as

$$
0 \in \partial_{z}\left(f(z)+(1 / 2 \lambda)\|z-x\|_{2}^{2}\right)
$$

which is the same as

$$
z=\underset{u}{\operatorname{argmin}}\left(f(u)+(1 / 2 \lambda)\|u-x\|_{2}^{2}\right)
$$

- RHS called proximal mapping of f, denoted $\operatorname{prox}_{\lambda f}(x)$

Example: Indicator function

- take $f=I_{C}$, indicator function of convex set C
- ∂f is the normal cone operator

$$
N_{C}(x)= \begin{cases}\emptyset & x \notin C \\ \left\{w \mid w^{T}(z-x) \leq 0 \forall z \in C\right\} & x \in C\end{cases}
$$

- proximal operator of f (i.e., resolvent of N_{C}) is

$$
\left(I+\lambda \partial I_{C}\right)^{-1}(x)=\underset{u}{\operatorname{argmin}}\left(I_{C}(u)+(1 / 2 \lambda)\|u-x\|_{2}^{2}\right)=\Pi_{C}(x)
$$

where Π_{C} is (Euclidean) projection onto C

Resolvent of multiplier to residual map

- take F to be multiplier to residual mapping for convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- $F(y)=b-A x$ where $x \in \operatorname{argmin}_{w} L(w, y)$
- $z=(I+\lambda F)^{-1}(y)$ means $z+\lambda F(z) \ni y$
- $z+\lambda(b-A x)=y$ for some $x \in \operatorname{argmin}_{w} L(w, z)$
- write as

$$
z=y+\lambda(A x-b), \quad \partial f(x)+A^{T} z \ni 0
$$

Resolvent of multiplier to residual map

- write second term as $\partial f(x)+A^{T} y+\lambda A^{T}(A x-b) \ni 0$, so

$$
x \in \underset{w}{\operatorname{argmin}}\left(f(w)+y^{T}(A w-b)+(\lambda / 2)\|A w-b\|_{2}^{2}\right)
$$

- function on right side is augmented Lagrangian for the problem
- so $z=R(y)$ can be found as

$$
\begin{aligned}
x & :=\underset{w}{\operatorname{argmin}}\left(f(w)+y^{T}(A w-b)+(\lambda / 2)\|A w-b\|_{2}^{2}\right) \\
z & :=y+\lambda(A x-b)
\end{aligned}
$$

Fixed points of Cayley and resolvent operators

- assume F is maximal monotone, $\lambda>0$
- solutions of $0 \in F(x)$ are fixed points of R :

$$
F(x) \ni 0 \Longleftrightarrow x+\lambda F(x) \ni x \Longleftrightarrow x=(I+\lambda F)^{-1}(x)=R(x)
$$

- solutions of $0 \in F(x)$ are fixed points of C :

$$
x=R(x) \Longleftrightarrow x=2 R(x)-x=C(x)
$$

- key result: we can solve $0 \in F(x)$ by finding fixed points of C or R
- next: how to actually find these fixed points

Outline

(1) Relations
(2) Monotone operators
(3) Nonexpansive and contractive operators
(4) Resolvent and Cayley operator
(5) Fixed point iterations
(6) Proximal point algorithm and method of multipliers

Fixed point iterations

Contraction mapping theorem

- also known as Banach fixed point theorem
- assume F is contraction, with Lipschitz constant $L<1, \operatorname{dom} F=\mathbf{R}^{n}$
- the iteration

$$
x^{k+1}:=F\left(x^{k}\right)
$$

converges to the unique fixed point of F

- proof (sketch):
- sequence x^{k} is Cauchy: $\left\|x^{k+m}-x^{k}\right\|_{2} \leq\left\|x^{k+1}-x^{k}\right\|_{2} /(1-L)$
- hence converges to a point x^{\star}
- x^{\star} must be (the) fixed point

Example: Gradient method

- assume f is convex, $m I \preceq \nabla^{2} f(x) \preceq L I$ (i.e., f strongly convex, ∇f Lipschitz)
- gradient method is

$$
x^{k+1}:=x^{k}-\alpha \nabla f\left(x^{k}\right)=F\left(x^{k}\right)
$$

(fixed points are exactly solutions of $F(x)=x$)

- $D F(x)=I-\alpha \nabla^{2} f(x)$
- F is a Lipschitz with parameter $\max \{|1-\alpha m|,|1-\alpha L|\}$
- F is a contraction when $0<\alpha<2 / L$
- so gradient method converges (geometrically) when $0<\alpha<2 / L$

Damped iteration of a nonexpansive operator

- suppose F is nonexpansive, $\operatorname{dom} F=\mathbf{R}^{n}$, with fixed point set $X=\{x \mid F(x)=x\}$
- can have $X=\emptyset$ (e.g., translation)
- simple iteration of F need not converge, even when $X \neq \emptyset$ (e.g., rotation)
- damped iteration:

$$
x^{k+1}:=\left(1-\theta^{k}\right) x^{k}+\theta^{k} F\left(x^{k}\right)
$$

$$
\theta^{k} \in(0,1)
$$

- important special case: $\theta^{k}=1 / 2$ (more later)
- another special case: $\theta^{k}=1 /(k+1)$, which gives simple averaging

$$
x^{k}=\frac{1}{k+1}\left(x^{0}+\cdots+F\left(x^{k-2}\right)+F\left(x^{k-1}\right)\right)
$$

Convergence results

- assume F is nonexpansive, $\operatorname{dom} F=\mathbf{R}^{n}, X \neq \emptyset$, and

$$
\sum_{k=0}^{\infty} \theta^{k}\left(1-\theta^{k}\right)=\infty
$$

(which holds for special cases above)

- then we have

$$
\min _{j=0, \ldots, k} \operatorname{dist}\left(x^{j}, X\right) \rightarrow 0
$$

i.e., (some) iterates get arbitrarily close to fixed point set, and

$$
\min _{j=0, \ldots, k}\left\|F\left(x^{j}\right)-x^{j}\right\|_{2} \rightarrow 0
$$

i.e., (some) iterates yield arbitrarily good 'almost fixed points'

Idea of proof

- $F\left(x^{k}\right)$ is no farther from x^{\star} than x^{k} is (by nonexpansivity)
- so x^{k+1} is closer to x^{\star} than x^{k} is

Proof

- start with identity

$$
\|\theta a+(1-\theta) b\|_{2}^{2}=\theta\|a\|_{2}^{2}+(1-\theta)\|b\|_{2}^{2}-\theta(1-\theta)\|b-a\|_{2}^{2}
$$

- apply to $x^{k+1}-x^{\star}=\left(1-\theta^{k}\right)\left(x^{k}-x^{\star}\right)+\theta^{k}\left(F\left(x^{k}\right)-x^{\star}\right)$:

$$
\begin{aligned}
& \left\|x^{k+1}-x^{\star}\right\|_{2}^{2} \\
& \quad=\left(1-\theta^{k}\right)\left\|x^{k}-x^{\star}\right\|_{2}^{2}+\theta^{k}\left\|F\left(x^{k}\right)-x^{\star}\right\|_{2}^{2}-\theta^{k}\left(1-\theta^{k}\right)\left\|F\left(x^{k}\right)-x^{k}\right\|_{2}^{2} \\
& \quad \leq\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\theta^{k}\left(1-\theta^{k}\right)\left\|F\left(x^{k}\right)-x^{k}\right\|_{2}^{2}
\end{aligned}
$$

$$
\text { using }\left\|F\left(x^{k}\right)-x^{\star}\right\|_{2} \leq\left\|x^{k}-x^{\star}\right\|_{2}
$$

Proof (continued)

- iterate inequality to get

$$
\sum_{j=0}^{k} \theta^{j}\left(1-\theta^{j}\right)\left\|F\left(x^{j}\right)-x^{j}\right\|_{2}^{2} \leq\left\|x^{0}-x^{\star}\right\|_{2}^{2}-\left\|x^{k+1}-x^{\star}\right\|_{2}^{2}
$$

- if $\left\|F\left(x^{j}\right)-x^{j}\right\|_{2} \geq \epsilon$ for $j=0, \ldots, k$, then

$$
\epsilon^{2} \leq \frac{\left\|x^{0}-x^{\star}\right\|_{2}^{2}}{\sum_{j=0}^{k} \theta^{j}\left(1-\theta^{j}\right)}
$$

- RHS goes to zero as $k \rightarrow \infty$

Outline

(1) Relations

(2) Monotone operators
(3) Nonexpansive and contractive operators
(4) Resolvent and Cayley operator
(5) Fixed point iterations
(6) Proximal point algorithm and method of multipliers

Proximal point algorithm and method of multipliers

Damped Cayley iteration

- want to solve $0 \in F(x)$ with F maximal monotone
- damped Cayley iteration:

$$
\begin{aligned}
x^{k+1} & :=\left(1-\theta^{k}\right) x^{k}+\theta^{k} C\left(x^{k}\right) \\
& =\left(1-\theta^{k}\right) x^{k}+\theta^{k}\left(2 R\left(x^{k}\right)-I\left(x^{k}\right)\right) \\
& =\left(1-2 \theta^{k}\right) x^{k}+2 \theta^{k} R\left(x^{k}\right)
\end{aligned}
$$

with $\theta^{k} \in(0,1)$ and $\sum_{k} \theta^{k}\left(1-\theta^{k}\right)=\infty$

- converges (assuming $X \neq \emptyset$) in sense given above
- important: requires ability to evaluate resolvent map of F

Proximal point algorithm

- take $\theta^{k}=1 / 2$ in damped Cayley iteration
- gives resolvent iteration or proximal point algorithm:

$$
x^{k+1}:=R\left(x^{k}\right)=(I+\lambda F)^{-1}\left(x^{k}\right)
$$

- if $F=\partial f$ with f convex, yields proximal minimization algorithm

$$
x^{k+1}:=\operatorname{prox}_{f, 1 / \lambda}\left(x^{k}\right)=\underset{x}{\operatorname{argmin}}\left(f(x)+(1 / 2 \lambda)\left\|x-x^{k}\right\|_{2}^{2}\right)
$$

can interpret as quadratic regularization that goes away in limit

- many classical algorithms are just proximal point method applied to appropriate maximal monotone operator

Method of multipliers

- take F to be multiplier to residual mapping for

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- $F(y)=b-A x$ with $x \in \operatorname{argmin}_{z} L(z, y)$
- proximal point algorithm becomes method of multipliers:

$$
\begin{aligned}
x^{k+1} & :=\underset{w}{\operatorname{argmin}}\left(f(w)+\left(y^{k}\right)^{T}(A w-b)+(\lambda / 2)\|A w-b\|_{2}^{2}\right) \\
y^{k+1} & :=y^{k}+\lambda\left(A x^{k+1}-b\right)
\end{aligned}
$$

Method of multipliers

- first step is augmented Lagrangian minimization
- second step is dual variable update
- y^{k} converges to an optimal dual variable
- primal residual $A x^{k}-b$ converges to zero

Method of multipliers dual update

- optimality conditions (primal and dual feasibility):

$$
A x-b=0, \quad \partial f(x)+A^{T} y \ni 0
$$

- from definition of x^{k+1} we have

$$
\begin{aligned}
0 & \in \partial f\left(x^{k+1}\right)+A^{T} y^{k}+\lambda A^{T}\left(A x^{k+1}-b\right) \\
& =\partial f\left(x^{k+1}\right)+A^{T} y^{k+1}
\end{aligned}
$$

- so dual update makes $\left(x^{k+1}, y^{k+1}\right)$ dual feasible
- primal feasibility occurs in limit as $k \rightarrow \infty$

Comparison with dual (sub)gradient method

method of multipliers

- like dual method, but with augmented Lagrangian, specific step size
- converges under far more general conditions than dual subgradient
- f need not be strictly convex, or differentiable
- f can take on value $+\infty$
- but not amenable to decomposition (more later ...)

