ℓ_1 -Norm Methods for Convex-Cardinality Problems

EE364b, Stanford University

Outline

- problems involving cardinality
- the ℓ_1 -norm heuristic
- convex relaxation and convex envelope interpretations
- examples
- recent results
- total variation
- iterated weighted ℓ_1 heuristic
- matrix rank constraints

$\ell_1\text{-norm}$ heuristics for cardinality problems

- cardinality problems arise often, but are hard to solve exactly
- $\bullet\,$ a simple heuristic, that relies on $\ell_1\text{-norm},$ seems to work well
- used for many years, in many fields
 - sparse design
 - LASSO, robust estimation in statistics
 - support vector machine (SVM) in machine learning
 - total variation reconstruction in signal processing, geophysics
 - compressed sensing
- recent theoretical results guarantee the method works, at least for a few problems

Cardinality

- the cardinality of $x \in \mathbf{R}^n$, denoted $\mathbf{card}(x)$, is the number of nonzero components of x
- card is separable; for scalar x, card(x) = $\begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$
- card is quasiconcave on \mathbf{R}^n_+ (but not \mathbf{R}^n) since

 $\operatorname{card}(x+y) \ge \min\{\operatorname{card}(x), \operatorname{card}(y)\}$

holds for $x, y \succeq 0$

- but otherwise has no convexity properties
- arises in many problems

General convex-cardinality problems

a **convex-cardinality problem** is one that would be convex, except for appearance of card in objective or constraints

examples (with C, f convex):

• convex minimum cardinality problem:

 $\begin{array}{ll} \text{minimize} & \mathbf{card}(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

• convex problem with cardinality constraint:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{C}, \quad \mathbf{card}(x) \leq k \end{array}$

Solving convex-cardinality problems

convex-cardinality problem with $x \in \mathbf{R}^n$

- if we fix the sparsity pattern of x (*i.e.*, which entries are zero/nonzero) we get a convex problem
- by solving 2^n convex problems associated with all possible sparsity patterns, we can solve convex-cardinality problem (possibly practical for $n \le 10$; not practical for n > 15 or so ...)
- general convex-cardinality problem is (NP-) hard
- can solve globally by branch-and-bound
 - can work for particular problem instances (with some luck)
 - in worst case reduces to checking all (or many of) 2^n sparsity patterns

Boolean LP as convex-cardinality problem

• Boolean LP:

minimize $c^T x$ subject to $Ax \leq b$, $x_i \in \{0, 1\}$

includes many famous (hard) problems, e.g., 3-SAT, traveling salesman

• can be expressed as

minimize $c^T x$ subject to $Ax \leq b$, $\mathbf{card}(x) + \mathbf{card}(1-x) \leq n$

since $\operatorname{card}(x) + \operatorname{card}(1-x) \le n \iff x_i \in \{0,1\}$

• conclusion: general convex-cardinality problem is hard

Sparse design

 $\begin{array}{ll} \text{minimize} & \mathbf{card}(x) \\ \text{subject to} & x \in \mathcal{C} \end{array}$

- find sparsest design vector x that satisfies a set of specifications
- zero values of x simplify design, or correspond to components that aren't even needed
- examples:
 - FIR filter design (zero coefficients reduce required hardware)
 - antenna array beamforming (zero coefficients correspond to unneeded antenna elements)
 - truss design (zero coefficients correspond to bars that are not needed)
 - wire sizing (zero coefficients correspond to wires that are not needed)

Sparse modeling / regressor selection

fit vector $b \in \mathbf{R}^m$ as a linear combination of k regressors (chosen from n possible regressors)

 $\begin{array}{ll} \text{minimize} & \|Ax - b\|_2\\ \text{subject to} & \mathbf{card}(x) \leq k \end{array}$

- gives *k*-term model
- chooses subset of k regressors that (together) best fit or explain b
- can solve (in principle) by trying all $\binom{n}{k}$ choices
- variations:
 - minimize $\operatorname{card}(x)$ subject to $||Ax b||_2 \le \epsilon$
 - minimize $||Ax b||_2 + \lambda \operatorname{card}(x)$

Sparse signal reconstruction

- estimate signal x, given
 - noisy measurement y = Ax + v, $v \sim \mathcal{N}(0, \sigma^2 I)$ (A is known; v is not)
 - prior information $\operatorname{card}(x) \leq k$
- maximum likelihood estimate \hat{x}_{ml} is solution of

 $\begin{array}{ll} \text{minimize} & \|Ax - y\|_2\\ \text{subject to} & \mathbf{card}(x) \leq k \end{array}$

Estimation with outliers

- we have measurements $y_i = a_i^T x + v_i + w_i$, $i = 1, \dots, m$
- noises $v_i \sim \mathcal{N}(0, \sigma^2)$ are independent
- only assumption on w is sparsity: $\mathbf{card}(w) \leq k$
- $\mathcal{B} = \{i \mid w_i \neq 0\}$ is set of bad measurements or *outliers*
- maximum likelihood estimate of x found by solving

 $\begin{array}{ll} \mbox{minimize} & \sum_{i \not\in \mathcal{B}} (y_i - a_i^T x)^2 \\ \mbox{subject to} & |\mathcal{B}| \leq k \end{array}$

with variables x and $\mathcal{B} \subseteq \{1, \ldots, m\}$

• equivalent to

minimize	$ y - Ax - w _2^2$
subject to	$\mathbf{card}(w) \le k$

Minimum number of violations

• set of convex inequalities

$$f_1(x) \le 0, \ldots, f_m(x) \le 0, \qquad x \in \mathcal{C}$$

• choose x to minimize the number of violated inequalities:

minimize
$$\operatorname{card}(t)$$

subject to $f_i(x) \leq t_i, \quad i = 1, \dots, m$
 $x \in \mathcal{C}, \quad t \geq 0$

 determining whether zero inequalities can be violated is (easy) convex feasibility problem

Linear classifier with fewest errors

- given data $(x_1, y_1), \ldots, (x_m, y_m) \in \mathbf{R}^n \times \{-1, 1\}$
- we seek linear (affine) classifier $y \approx \operatorname{sign}(w^T x + v)$
- classification error corresponds to $y_i(w^T x + v) \leq 0$
- to find w, v that give fewest classification errors:

minimize
$$\operatorname{card}(t)$$

subject to $y_i(w^T x_i + v) + t_i \ge 1, \quad i = 1, \dots, m$

with variables w, v, t (we use homogeneity in w, v here)

Smallest set of mutually infeasible inequalities

- given a set of mutually infeasible convex inequalities $f_1(x) \leq 0, \ldots, f_m(x) \leq 0$
- find smallest (cardinality) subset of these that is infeasible
- certificate of infeasibility is $g(\lambda) = \inf_x (\sum_{i=1}^m \lambda_i f_i(x)) \ge 1$, $\lambda \succeq 0$
- to find smallest cardinality infeasible subset, we solve

 $\begin{array}{ll} \mbox{minimize} & \mbox{card}(\lambda) \\ \mbox{subject to} & g(\lambda) \geq 1, \quad \lambda \succeq 0 \end{array}$

(assuming some constraint qualifications)

Portfolio investment with linear and fixed costs

- we use budget B to purchase (dollar) amount $x_i \ge 0$ of stock i
- trading fee is fixed cost plus linear cost: $\beta \operatorname{card}(x) + \alpha^T x$
- budget constraint is $\mathbf{1}^T x + \beta \operatorname{\mathbf{card}}(x) + \alpha^T x \leq B$
- mean return on investment is $\mu^T x$; variance is $x^T \Sigma x$
- minimize investment variance (risk) with mean return $\geq R_{\min}$:

$$\begin{array}{ll} \mbox{minimize} & x^T \Sigma x \\ \mbox{subject to} & \mu^T x \geq R_{\min}, & x \succeq 0 \\ & \mathbf{1}^T x + \beta \operatorname{\mathbf{card}}(x) + \alpha^T x \leq B \end{array}$$

Piecewise constant fitting

- fit corrupted x_{cor} by a piecewise constant signal \hat{x} with k or fewer jumps
- problem is convex once location (indices) of jumps are fixed
- \hat{x} is piecewise constant with $\leq k$ jumps $\iff \mathbf{card}(D\hat{x}) \leq k$, where

$$D = \begin{bmatrix} 1 & -1 & & & \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & & 1 & -1 \end{bmatrix} \in \mathbf{R}^{(n-1) \times n}$$

• as convex-cardinality problem:

minimize
$$\|\hat{x} - x_{cor}\|_2$$

subject to $card(D\hat{x}) \le k$

Piecewise linear fitting

- fit x_{cor} by a piecewise linear signal \hat{x} with k or fewer kinks
- as convex-cardinality problem:

$$egin{array}{lll} {
m minimize} & \|\hat{x} - x_{
m cor}\|_2 \ {
m subject to} & {f card}(
abla^2 \hat{x}) \leq k \end{array}$$

where

$$\nabla^2 = \begin{bmatrix} -1 & 2 & -1 & & \\ & -1 & 2 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \end{bmatrix}$$

ℓ_1 -norm heuristic

- replace $\operatorname{card}(z)$ with $\gamma \|z\|_1$, or add regularization term $\gamma \|z\|_1$ to objective
- γ > 0 is parameter used to achieve desired sparsity (when card appears in constraint, or as term in objective)
- more sophisticated versions use $\sum_i w_i |z_i|$ or $\sum_i w_i (z_i)_+ + \sum_i v_i (z_i)_-$, where w, v are positive weights

Example: Minimum cardinality problem

• start with (hard) minimum cardinality problem

 $\begin{array}{ll} \mbox{minimize} & \mbox{card}(x) \\ \mbox{subject to} & x \in \mathcal{C} \end{array}$

(C convex)

• apply heuristic to get (easy) ℓ_1 -norm minimization problem

 $\begin{array}{ll} \text{minimize} & \|x\|_1 \\ \text{subject to} & x \in \mathcal{C} \end{array}$

Example: Cardinality constrained problem

• start with (hard) cardinality constrained problem (f, C convex)

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in \mathcal{C}, \quad \mathbf{card}(x) \leq k \end{array}$

• apply heuristic to get (easy) ℓ_1 -constrained problem

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & x \in \mathcal{C}, \quad \|x\|_1 \leq \beta \end{array}$

or $\ell_1\text{-}\mathsf{regularized}$ problem

 $\begin{array}{ll} \mbox{minimize} & f(x) + \gamma \|x\|_1 \\ \mbox{subject to} & x \in \mathcal{C} \end{array}$

 $\beta\text{, }\gamma\text{ adjusted so that }\mathbf{card}(x)\leq k$

Polishing

- use ℓ_1 heuristic to find \hat{x} with required sparsity
- fix the sparsity pattern of \hat{x}
- re-solve the (convex) optimization problem with this sparsity pattern to obtain final (heuristic) solution

Interpretation as convex relaxation

• start with

 $\begin{array}{ll} \text{minimize} & \mathbf{card}(x)\\ \text{subject to} & x \in \mathcal{C}, \quad \|x\|_{\infty} \leq R \end{array}$

• equivalent to mixed Boolean convex problem

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T z \\ \text{subject to} & |x_i| \leq R z_i, \quad i = 1, \dots, n \\ & x \in \mathcal{C}, \quad z_i \in \{0, 1\}, \quad i = 1, \dots, n \end{array}$$

with variables x, z

• now relax $z_i \in \{0,1\}$ to $z_i \in [0,1]$ to obtain

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T z \\ \text{subject to} & |x_i| \leq R z_i, \quad i = 1, \dots, n \\ & x \in \mathcal{C} \\ & 0 \leq z_i \leq 1, \quad i = 1, \dots, n \end{array}$$

which is equivalent to

minimize $(1/R) \|x\|_1$ subject to $x \in C$

the ℓ_1 heuristic

• optimal value of this problem is lower bound on original problem

Interpretation via convex envelope

- convex envelope f^{env} of a function f on set C is the largest convex function that is an underestimator of f on C
- $epi(f^{env}) = Co(epi(f))$
- $f^{env} = (f^*)^*$ (with some technical conditions)
- for x scalar, |x| is the convex envelope of $\mathbf{card}(x)$ on [-1,1]
- for $x \in \mathbf{R}^n$, $(1/R) \|x\|_1$ is convex envelope of $\operatorname{card}(x)$ on $\{z \mid \|z\|_{\infty} \leq R\}$

Weighted and asymmetric ℓ_1 heuristics

- minimize $\mathbf{card}(x)$ over convex set $\mathcal C$
- suppose we know lower and upper bounds on x_i over $\mathcal C$

$$x \in \mathcal{C} \implies l_i \leq x_i \leq u_i$$

(best values for these can be found by solving 2n convex problems)

- if $u_i < 0$ or $l_i > 0$, then $card(x_i) = 1$ (*i.e.*, $x_i \neq 0$) for all $x \in C$
- assuming $l_i < 0$, $u_i > 0$, convex relaxation and convex envelope interpretations suggest using

$$\sum_{i=1}^{n} \left(\frac{(x_i)_+}{u_i} + \frac{(x_i)_-}{-l_i} \right)$$

as surrogate (and also lower bound) for card(x)

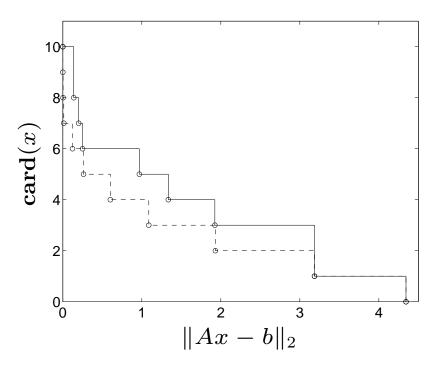
Regressor selection

 $\begin{array}{ll} \text{minimize} & \|Ax - b\|_2\\ \text{subject to} & \mathbf{card}(x) \leq k \end{array}$

- heuristic:
 - minimize $||Ax b||_2 + \gamma ||x||_1$
 - find smallest value of γ that gives $\mathbf{card}(x) \leq k$
 - fix associated sparsity pattern (*i.e.*, subset of selected regressors) and find x that minimizes $||Ax b||_2$

Example (6.4 in BV book)

- $A \in \mathbf{R}^{10 \times 20}$, $x \in \mathbf{R}^{20}$, $b \in \mathbf{R}^{10}$
- dashed curve: exact optimal (via enumeration)
- \bullet solid curve: ℓ_1 heuristic with polishing



Sparse signal reconstruction

• convex-cardinality problem:

minimize $||Ax - y||_2$ subject to $card(x) \le k$

• ℓ_1 heuristic:

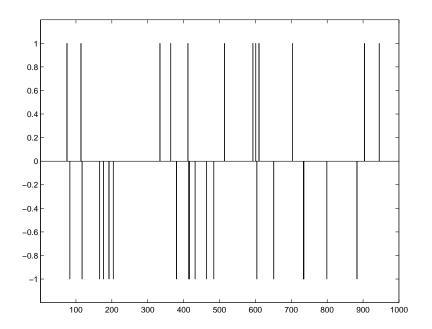
 $\begin{array}{ll} \text{minimize} & \|Ax - y\|_2\\ \text{subject to} & \|x\|_1 \leq \beta \end{array}$

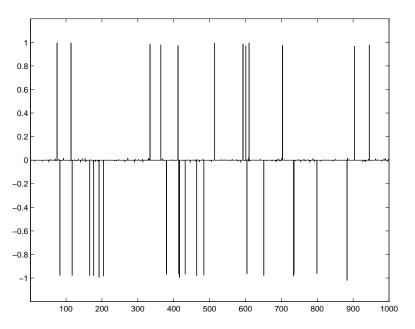
(called LASSO)

• another form: minimize $||Ax - y||_2 + \gamma ||x||_1$ (called basis pursuit denoising)

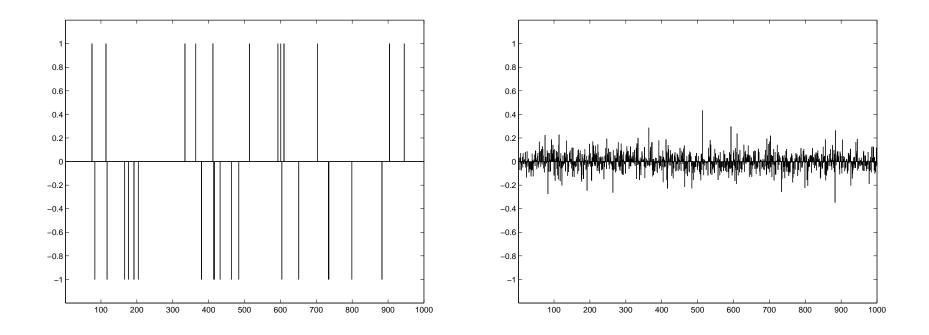
Example

- signal $x \in \mathbf{R}^n$ with n = 1000, $\mathbf{card}(x) = 30$
- m = 200 (random) noisy measurements: y = Ax + v, $v \sim \mathcal{N}(0, \sigma^2 I)$, $A_{ij} \sim \mathcal{N}(0, 1)$
- *left*: original; *right*: ℓ_1 reconstruction with $\gamma = 10^{-3}$





- ℓ_2 reconstruction; minimizes $||Ax y||_2 + \gamma ||x||_2$, where $\gamma = 10^{-3}$
- *left*: original; *right*: ℓ_2 reconstruction



Some recent theoretical results

- suppose y = Ax, $A \in \mathbb{R}^{m \times n}$, $card(x) \le k$
- to reconstruct x, clearly need $m \geq k$
- if $m \ge n$ and A is full rank, we can reconstruct x without cardinality assumption
- when does the ℓ_1 heuristic (minimizing $||x||_1$ subject to Ax = y) reconstruct x (exactly)?

recent results by Candès, Donoho, Romberg, Tao, . . .

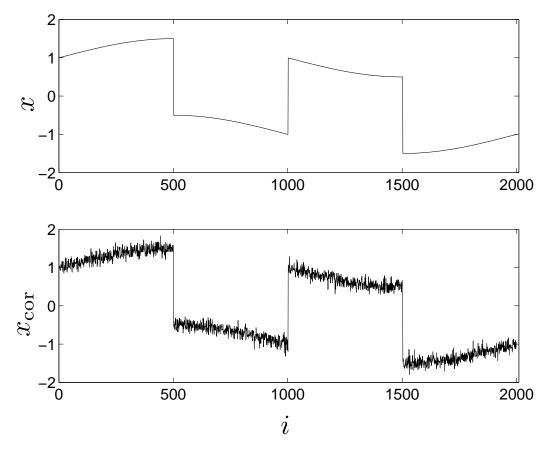
- (for some choices of A) if $m \geq (C \log n)k$, ℓ_1 heuristic reconstructs x exactly, with overwhelming probability
- C is absolute constant; valid A's include
 - $A_{ij} \sim \mathcal{N}(0, \sigma^2)$
 - Ax gives Fourier transform of x at m frequencies, chosen from uniform distribution

Total variation reconstruction

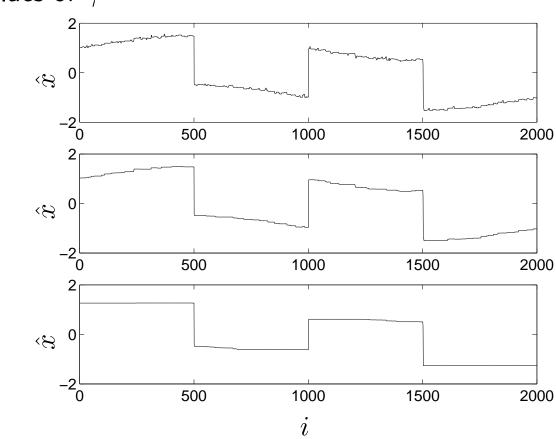
- fit x_{cor} with piecewise constant \hat{x} , no more than k jumps
- convex-cardinality problem: minimize $||\hat{x} x_{cor}||_2$ subject to card $(Dx) \le k$ (D is first order difference matrix)
- heuristic: minimize $\|\hat{x} x_{cor}\|_2 + \gamma \|Dx\|_1$; vary γ to adjust number of jumps
- $||Dx||_1$ is total variation of signal \hat{x}
- method is called *total variation reconstruction*
- unlike ℓ_2 based reconstruction, TVR filters high frequency noise out while preserving sharp jumps

Example (§6.3.3 in BV book)

signal $x \in \mathbf{R}^{2000}$ and corrupted signal $x_{\rm cor} \in \mathbf{R}^{2000}$

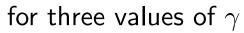


Total variation reconstruction



for three values of γ

ℓ_2 reconstruction





Example: 2D total variation reconstruction

- $x \in \mathbf{R}^n$ are values of pixels on $N \times N$ grid (N = 31, so n = 961)
- assumption: x has relatively few big changes in value (*i.e.*, boundaries)
- we have m = 120 linear measurements, y = Fx ($F_{ij} \sim \mathcal{N}(0, 1)$)
- as convex-cardinality problem:

minimize
$$\operatorname{card}(x_{i,j} - x_{i+1,j}) + \operatorname{card}(x_{i,j} - x_{i,j+1})$$

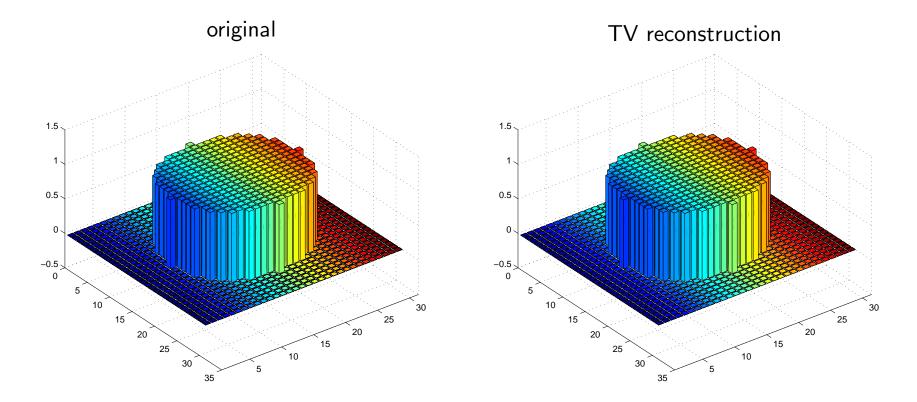
subject to $y = Fx$

• ℓ_1 heuristic (objective is a 2D version of total variation)

minimize
$$\sum |x_{i,j} - x_{i+1,j}| + \sum |x_{i,j} - x_{i,j+1}|$$

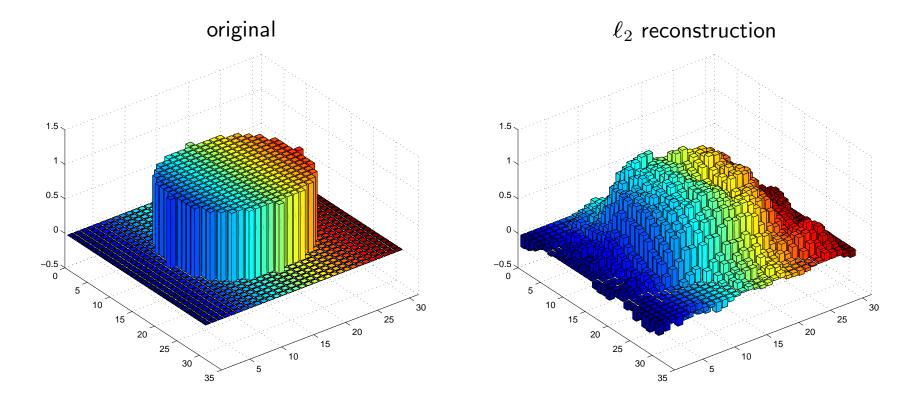
subject to $y = Fx$

TV reconstruction



. . . not bad for $8 \times$ more variables than measurements!

ℓ_2 reconstruction



. . . this is what you'd expect with $8 \times$ more variables than measurements

Iterated weighted ℓ_1 heuristic

• to minimize $\operatorname{card}(x)$ over $x \in \mathcal{C}$

```
\begin{split} w &:= \mathbf{1} \\ \text{repeat} \\ & \text{minimize } \|\operatorname{\mathbf{diag}}(w)x\|_1 \text{ over } x \in \mathcal{C} \\ & w_i := 1/(\epsilon + |x_i|) \end{split}
```

- first iteration is basic ℓ_1 heuristic
- increases relative weight on small x_i
- typically converges in 5 or fewer steps
- often gives a modest improvement (*i.e.*, reduction in card(x)) over basic l₁ heuristic

Interpretation

- wlog we can take x ≥ 0 (by writing x = x₊ x₋, x₊, x₋ ≥ 0, and replacing card(x) with card(x₊) + card(x₋))
- we'll use approximation $\operatorname{card}(z) \approx \log(1 + z/\epsilon)$, where $\epsilon > 0$, $z \in \mathbf{R}_+$
- using this approximation, we get (nonconvex) problem

minimize
$$\sum_{i=1}^{n} \log(1 + x_i/\epsilon)$$

subject to $x \in \mathcal{C}, x \succeq 0$

we'll find a local solution by linearizing objective at current point,

$$\sum_{i=1}^{n} \log(1 + x_i/\epsilon) \approx \sum_{i=1}^{n} \log(1 + x_i^{(k)}/\epsilon) + \sum_{i=1}^{n} \frac{x_i - x_i^{(k)}}{\epsilon + x_i^{(k)}}$$

and solving resulting convex problem

minimize
$$\sum_{i=1}^{n} w_i x_i$$

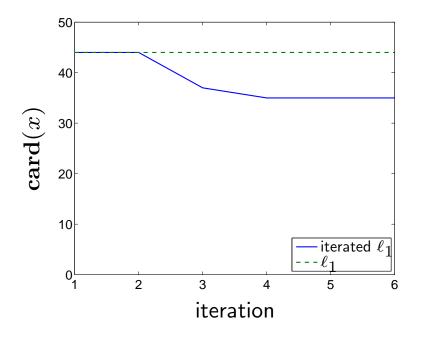
subject to $x \in \mathcal{C}, \quad x \succeq 0$

with $w_i = 1/(\epsilon + x_i)$, to get next iterate

• repeat until convergence to get a local solution

Sparse solution of linear inequalities

- minimize card(x) over polyhedron $\{x \mid Ax \leq b\}$, $A \in \mathbf{R}^{100 \times 50}$
- ℓ_1 heuristic finds $x \in \mathbf{R}^{50}$ with $\mathbf{card}(x) = 44$
- iterated weighted ℓ_1 heuristic finds x with card(x) = 36 (global solution, via branch & bound, is card(x) = 32)



Detecting changes in time series model

• AR(2) scalar time-series model

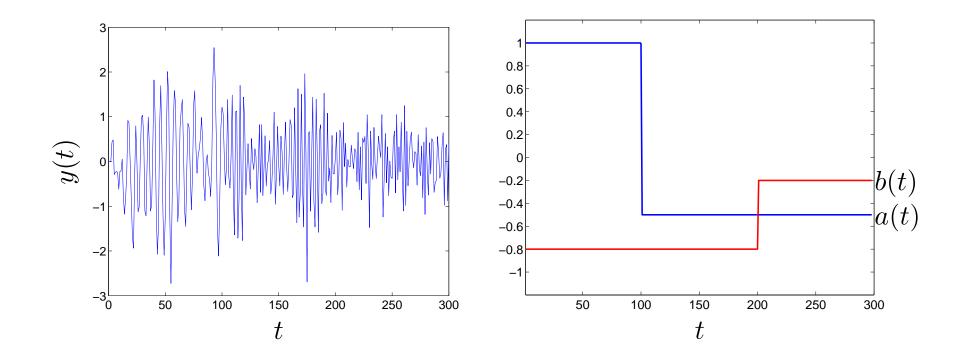
 $y(t+2) = a(t)y(t+1) + b(t)y(t) + v(t), \quad v(t) \text{ IID } \mathcal{N}(0, 0.5^2)$

- assumption: a(t) and b(t) are piecewise constant, change infrequently
- given y(t), $t = 1, \ldots, T$, estimate a(t), b(t), $t = 1, \ldots, T 2$
- heuristic: minimize over variables a(t), b(t), $t = 1, \ldots, T-1$

$$\sum_{t=1}^{T-2} (y(t+2) - a(t)y(t+1) - b(t)y(t))^2 + \gamma \sum_{t=1}^{T-2} (|a(t+1) - a(t)| + |b(t+1) - b(t)|)$$

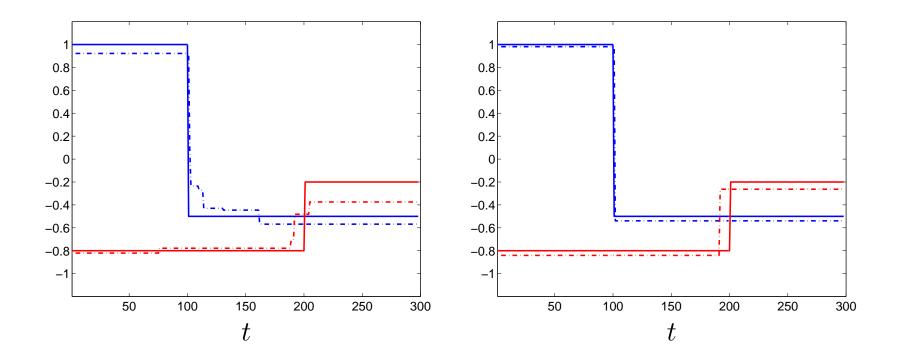
• vary γ to trade off fit versus number of changes in a, b

Time series and true coefficients



TV heuristic and iterated TV heuristic

left: TV with $\gamma = 10$; *right:* iterated TV, 5 iterations, $\epsilon = 0.005$



Extension to matrices

- Rank is natural analog of card for matrices
- convex-rank problem: convex, except for Rank in objective or constraints
- rank problem reduces to card problem when matrices are diagonal: Rank(diag(x)) = card(x)
- analog of ℓ_1 heuristic: use *nuclear norm*, $||X||_* = \sum_i \sigma_i(X)$ (sum of singular values; dual of spectral norm)
- for $X \succeq 0$, reduces to $\operatorname{Tr} X$ (for $x \succeq 0$, $||x||_1$ reduces to $\mathbf{1}^T x$)

Factor modeling

- given matrix $\Sigma \in \mathbf{S}_{+}^{n}$, find approximation of form $\hat{\Sigma} = FF^{T} + D$, where $F \in \mathbf{R}^{n \times r}$, D is diagonal nonnegative
- gives underlying factor model (with r factors)

$$x = Fz + v, \quad v \sim \mathcal{N}(0, D), \quad z \sim \mathcal{N}(0, I)$$

• model with fewest factors:

$$\begin{array}{lll} \text{minimize} & \mathbf{Rank} \, X \\ \text{subject to} & X \succeq 0, \quad D \succeq 0 \text{ diagonal} \\ & X + D \in \mathcal{C} \end{array}$$

with variables $D, X \in \mathbf{S}^n$ \mathcal{C} is convex set of acceptable approximations to Σ

• *e.g.*, via KL divergence

$$\mathcal{C} = \{ \hat{\Sigma} \mid -\log \det(\Sigma^{-1/2} \hat{\Sigma} \Sigma^{-1/2}) + \mathbf{Tr}(\Sigma^{-1/2} \hat{\Sigma} \Sigma^{-1/2}) - n \le \epsilon \}$$

• trace heuristic:

minimize
$$\operatorname{Tr} X$$

subject to $X \succeq 0$, $D \succeq 0$ diagonal
 $X + D \in \mathcal{C}$

with variables $d \in \mathbf{R}^n$, $X \in \mathbf{S}^n$

Example

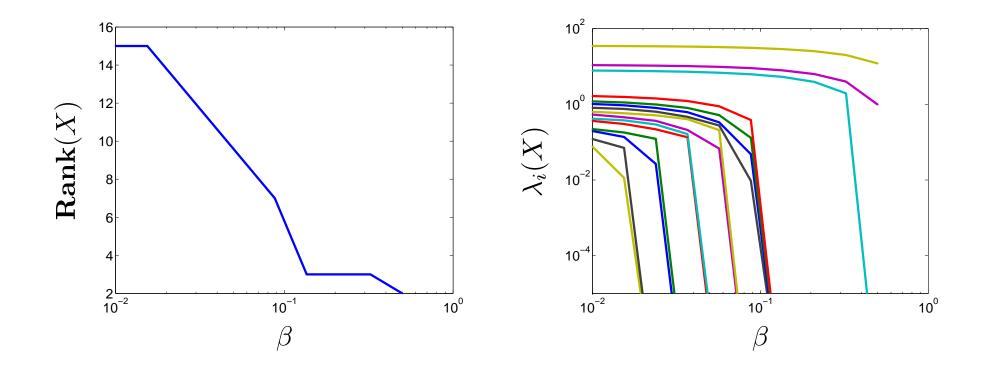
- x = Fz + v, $z \sim \mathcal{N}(0, I)$, $v \sim \mathcal{N}(0, D)$, D diagonal; $F \in \mathbf{R}^{20 \times 3}$
- Σ is empirical covariance matrix from N = 3000 samples
- set of acceptable approximations

$$\mathcal{C} = \{ \hat{\Sigma} \mid \|\Sigma^{-1/2} (\hat{\Sigma} - \Sigma) \Sigma^{-1/2} \| \le \beta \}$$

• trace heuristic

$$\begin{array}{ll} \text{minimize} & \mathbf{Tr} \, X \\ \text{subject to} & X \succeq 0, \quad d \succeq 0 \\ \| \Sigma^{-1/2} (X + \mathbf{diag}(d) - \Sigma) \Sigma^{-1/2} \| \leq \beta \end{array}$$

Trace approximation results



• for $\beta=0.1357$ (knee of the tradeoff curve) we find

$$- \angle (\operatorname{range}(X), \operatorname{range}(FF^T)) = 6.8^{\circ}$$

$$- \|d - \mathbf{diag}(D)\| / \|\mathbf{diag}(D)\| = 0.07$$

• *i.e.*, we have recovered the factor model from the empirical covariance

Summary and conclusions

- convex-cardinality (and rank) problems arise in many applications
- these problems are hard (to solve exactly, in general)
- heuristics based on ℓ_1 norm (or nuclear norm for rank)
 - are convex, hence solvable
 - give very good results in practice
- is basis of many well known methods (lasso, SVM, compressed sensing, TV denoising, . . .)