Dikin's Method

Stephen Boyd (with help from AJ Friend)

EE364b, Stanford University

Outline

Dikin's original method for LP

Generalized Dikin's method

Dikin's method

- a simple proto interior-point method, originally for solving LPs
- invented by Dikin in 1967, but ignored/unknown for decades
- also called affine scaling method
- has very simple interpretation

Standard form LP

primal problem:

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \succ 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T \nu \\ \text{subject to} & c + A^T \nu \succeq 0 \end{array}$$

optimality conditions:

ullet primal feasibility: Ax=b, $x\succeq 0$

• dual feasibility: $c + A^T \nu \succeq 0$

• zero gap/ complementarity: $x^T(c+A^T\nu)=c^Tx+b^T\nu=0$

Dikin ellipsoid

• for $y \succ 0$, Dikin ellipsoid is

$$\mathcal{E}(y) = \{x \mid (x - y)^T H (x - y) \le 1\}, \qquad H = \mathbf{diag}(y)^{-2}$$

• $\mathcal{E}(y) \subset \mathbf{R}^n_+$; follows from

$$\sum_{i} \frac{(x_i - y_i)^2}{y_i^2} \le 1 \implies \frac{(x_i - y_i)^2}{y_i^2} \le 1 \implies |x_i - y_i| \le y_i \implies x_i \ge 0$$

Dikin's method

- start with (strictly feasible) $x^0 > 0$, $Ax^0 = b$
- x^{k+1} is solution of

- there's a simple formula for x^{k+1}
- maintains feasibility
- converges to solution

Dikin update

• with $H = \operatorname{diag}(x^k)^{-2}$, x^{k+1} is solution of

$$\begin{array}{ll} \mbox{minimize} & c^Tx \\ \mbox{subject to} & Ax = b \\ & (x-x^k)^T H(x-x^k) \leq 1 \end{array}$$

• find $\Delta x^k = x^{k+1} - x^k$ via KKT system

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \mu \nu \end{bmatrix} = \begin{bmatrix} -\mu c \\ 0 \end{bmatrix},$$

where μ is chosen after the solve to enforce the ellipsoid constraint

more explicitly:

$$\nu^{k} = -(AH^{-1}A^{T})^{-1}AH^{-1}c$$

$$s^{k} = -H^{-1}(c + A^{T}\nu^{k})$$

$$\mu^{k} = 1/\sqrt{s^{kT}Hs^{k}}$$

$$\Delta x^{k} = \mu^{k}s^{k}$$

Comparison with barrier method

• barrier method centering problem:

$$\begin{array}{ll} \text{minimize} & tc^Tx - \sum_{i=1}^n \log x_i \\ \text{subject to} & Ax = b \end{array}$$

• Newton step Δx^k given by

$$\begin{bmatrix} H^k & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ t\nu \end{bmatrix} = \begin{bmatrix} -tc + \mathbf{diag}(x^k)^{-1} \mathbf{1} \\ 0 \end{bmatrix}$$

where
$$H^k = \mathbf{diag}(x^k)^{-2}$$

• with $t=\mu$, same as Dikin update except for centering term ${\bf diag}(x^k)^{-1}{\bf 1}$

Stopping criteria

- Dikin iterates always primal feasible: $Ax^k = b$, $x^k \succeq 0$
- dual feasibility and zero duality gap only satisfied in the limit
- reasonable stopping criteria are

$$\min(c + A^T \nu^k) \ge -\epsilon_{\text{df}}, \qquad |c^T x^k + b^T \nu^k| \le \epsilon_{\text{gap}}$$

(second term is a *pseudo-gap*; it is only the true gap when $c + A^T \nu^k \succeq 0$)

- $\mu(c + A^T \nu^k) = -H^k \Delta x^k = -\left(\Delta x_1^k / (x_1^k)^2, \dots, \Delta x_n^k / (x_n^k)^2\right)$
- stopping criteria can be written

$$\max_{i} \frac{1}{\mu} \frac{\Delta x_{i}^{k}}{(x_{i}^{k})^{2}} \le \epsilon_{\mathrm{df}}, \qquad \frac{1}{\mu} \left| \sum_{i} \frac{\Delta x_{i}^{k}}{x_{i}^{k}} \right| \le \epsilon_{\mathrm{gap}}$$

Long step Dikin's method

- long step given by $x^{k+1} = x^k + \tau \Delta x^k$
- $\tau = 0.95 \max\{t \mid x + t\Delta x \succeq 0\}$
- \bullet $\it i.e.,$ step in Dikin direction, 95% of the way to boundary

Short step example

$$m = 100, n = 400$$

Long step example

$$m = 100, n = 400$$

Larger example

m = 4000, n = 16000, A 0.8% dense (500000 nonzeros), long step

Outline

Dikin's original method for LP

Generalized Dikin's method

Dikin ellipsoid for general constraints

- ϕ is self-concordant barrier for set $\mathcal C$
- for $y \in \text{int } \mathcal{C}$, $(x-y)^T \nabla^2 \phi(y)(x-y) \leq 1 \implies x \in \mathcal{C}$
- for $\mathcal{C} = \mathbf{R}^n_{\perp}$,

$$\phi(x) = -\sum_{i=1}^{n} \log(x_i), \quad \nabla^2 \phi(y) = \mathbf{diag}(y)^{-2}$$

• for $C = \mathbf{S}_{++}^n$,

$$\phi(X) = -\log \det X, \quad \nabla^2 \phi(Y)(\Delta X) = Y^{-1}(\Delta X)Y^{-1}$$

ullet for direct product $\mathcal{C} = \mathcal{C}_1 imes \cdots imes \mathcal{C}_k$, use barrier

$$\phi(x) = \sum_{i=1}^{k} \phi_i(x_i)$$

SOCP Dikin ellipsoid

- $C = \{x = (v, t) \in \mathbf{R}^n \times \mathbf{R} \mid ||v||_2 \le t\}$
- $\phi(x) = -\log(t^2 v^T v)$
- $\bullet \ \nabla^2 \phi(x) = \frac{2}{t^2 v^T v} \begin{bmatrix} I & 0 \\ 0 & -1 \end{bmatrix} + \frac{4}{(t^2 v^T v)^2} \begin{bmatrix} -v \\ t \end{bmatrix} \begin{bmatrix} -v^T & t \end{bmatrix}$

Dikin's method with general constraints

- ullet ϕ is self-concordant barrier for ${\cal C}$
- x^{k+1} is solution of

$$\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & Ax = b \\ & (x - x^k)^T H^k (x - x^k) \leq 1, \end{array}$$

where
$$H^k = \nabla^2 \phi(x^k)$$

• long step update: move 95% towards boundary

Inequality form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \preceq b \end{array}$$

- $\phi(x) = -\sum_{i=1}^{m} \log(b_i a_i^T x)$
- $\bullet \ \ H = \nabla^2 \phi(x) = A^T \operatorname{\mathbf{diag}}(b Ax)^{-2} A$
- Dikin step is

$$x^{k+1} = x^k - \frac{H^{-1}c}{\sqrt{c^T H^{-1}c}}$$

Inequality form LP cont.

• dual

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & c + A^T \lambda = 0 \\ & \lambda \succeq 0 \end{array}$$

• stopping criteria

$$\lambda = {\rm diag}(b-Ax)^2 As \succeq -\epsilon_{\rm df}, \qquad |c^Tx+b^T\lambda| \le \epsilon_{\rm gap},$$
 where $s=-H^{-1}c$

Inequality form LP example (long step)

$$m = 1500, n = 500$$

SDP

SDP in inequality form

minimize
$$c^T x$$

subject to $\sum_{i=1}^n x_i A_i \leq B$

 $B, A_i \in \mathbf{S}^m$

- $\phi(x) = -\log \det (B \sum_{i=1}^{n} x_i A_i)$
- · Hessian given by

$$H_{ij} = \mathbf{tr}(S^{-1}A_iS^{-1}A_j), \quad S = B - \sum_{i=1}^{n} x_i A_i$$

• step identical to inequality form LP

$$x^{k+1} = x^k - \frac{H^{-1}c}{\sqrt{c^T H^{-1}c}}$$

SDP cont.

• dual

$$\begin{array}{ll} \text{maximize} & -\operatorname{tr}(BZ) \\ \text{subject to} & c_i + \operatorname{tr}(A_iZ) = 0, \quad i = 1, \dots, n \\ & Z \succeq 0 \end{array}$$

• stopping criteria

$$Z\succeq -\epsilon_{\rm df}I, \qquad |c^Tx+{\bf tr}(BZ)|\leq \epsilon_{\rm gap},$$
 where $Z=\sum_{i=1}^n S^{-1}A_jS^{-1}s_j,\ s=-H^{-1}c$

SDP example (short step)

$$m = 100, n = 100$$

