EE364b Convex Optimization II

Diffusion Models

Instructor: Mert Pilanci

Stanford University

May 30, 2023

Stochastic Gradient Descent

$$x_{t+1} = x_t - \alpha_t g_t$$

 $lackbox{lack} g_t$ is an unbiased estimate of a subgradient at x_t

$$\mathbb{E}[g_t] \in \partial f(x_t)$$

- eventually iterates are near a global optimum of f(x) when f(x) is convex and the step-sizes α_t are chosen appropriately
- for non-convex differentiable functions, iterates are eventually near a stationary point $\nabla f(x)=0$ under certain functional assumptions* on f(x)

^{*}e.g, when the gradients are Lipschitz continuous () () () () () ()

Langevin Diffusion (Langevin Monte Carlo)

Consider gradient descent steps function for a function f(x) with additional Gaussian noise

$$x_{t+1} = x_t - \frac{\epsilon}{2} \nabla f(x_t) + \sqrt{\epsilon} z_t$$

where $z_t \sim \mathcal{N}(0, I)$

- random sample generation method
- noisy gradient descent updates
- lacktriangle the distribution of x_t converges to a distribution proportional to

$$e^{-f(x)}$$

as $t \to \infty$ and $\epsilon \to 0$ under certain assumptions* on f(x)

known as the Langevin Monte Carlo method

^{*}e.g., when f(x) is convex

example: consider the quadratic function

- $f(x) = \frac{1}{2}(x \mu)^T \Sigma^{-1}(x \mu)$ where $\mu \in \mathbb{R}^d$ is a known mean vector and $\Sigma \in \mathbb{S}^{d \times d}$ is a p.s.d. covariance matrix
- identical to the least squares objective $f(x)=\frac{1}{2}\|Ax-b\|_2^2$ where $A=\Sigma^{-1/2}$ and $b=\Sigma^{-1/2}\mu$
- ordinary gradient descent

$$x_{t+1} = x_t - \epsilon \nabla f(x_t)$$

= $x_t - \epsilon \Sigma^{-1}(x_t - \mu)$

$$f(x) = \frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)$$

ordinary gradient descent

$$x_{t+1} = x_t - \epsilon \Sigma^{-1} (x_t - \mu)$$

noisy gradient descent (Langevin Diffusion)

$$x_{t+1} = x_t - \epsilon \Sigma^{-1} (x_t - \mu) + \sqrt{\epsilon} z_t$$
$$z_t \sim \mathcal{N}(0, I)$$

ordinary gradient descent

$$x_{t+1} = x_t - \epsilon \Sigma^{-1} (x_t - \mu)$$

noisy gradient descent (Langevin Diffusion)

$$x_{t+1} = x_t - \epsilon \Sigma^{-1} (x_t - \mu) + \sqrt{\epsilon} z_t$$
$$z_t \sim \mathcal{N}(0, I)$$

Variants of the Langevin Sampler

plain Langevin diffusion

$$x_{t+1} = x_t - \frac{\epsilon}{2} \nabla f(x_t) + \sqrt{\epsilon} z_t$$

second-order (i.e., preconditioned) Langevin

$$x_{t+1} = x_t - \frac{\epsilon}{2} (\nabla^2 f(x))^{-1} \nabla f(x_t) + (\nabla^2 f(x))^{-1/2} \sqrt{\epsilon} z_t$$

ightharpoonup proximal Langevin for $e^{-f(x)-g(x)}$

$$x_{t+1} = \operatorname{prox}_{\lambda g} \left(x_t - \frac{\epsilon}{2} \nabla f(x_t) + \sqrt{\epsilon} z_t \right)$$

when g is non-differentiable

Variants of the Langevin Sampler

ightharpoonup primal-dual Langevin for $e^{-f(x)-g(Dx)}$

$$x_{t+1} = \operatorname{prox}_{\lambda f} \left(x_t - \frac{\epsilon}{2} D^T \tilde{u}_t + \sqrt{\epsilon} z_t \right)$$

$$u_{t+1} = \operatorname{prox}_{\lambda g} \left(u_n + \lambda D(2x_{t+1} - x_t) \right)$$

$$\tilde{u}_{t+1} = \tilde{u}_t + \tau (u_{t+1} - u_t)$$

- ▶ the second term can represent non-differentiable regularizers, e.g., total variation $||Dx||_1$ via $g(\cdot) = ||\cdot||_1$
- ▶ analogue of Douglas-Rachford splitting and ADMM
- mirror-Langevin: analogue of mirror descent

Langevin Diffusion and Score Functions

- \blacktriangleright suppose we want to generate samples from a probability distribution p(x)
- let $f(x) := \log p(x)$ and apply plain Langevin diffusion

$$x_{t+1} = x_t - \epsilon \underbrace{\nabla \log p(x)}_{s(x)} + \sqrt{\epsilon} z_t$$
$$z_t \sim \mathcal{N}(0, I)$$

- ightharpoonup s(x) is the gradient of the log-likelihood
- ightharpoonup s(x) is called the score function
- typically we have parameters θ in our score function model $s(x) := s_{\theta}(x)$

Score functions

- ▶ the score function $s_{\theta}(x) = \nabla \log p_{\theta}(x)$ scores the values of x as it assumes values from the distribution p(x)
- scores near zero are good scores and scores different from zero are bad scores
- stationary points in the maximum likelihood objective

$$\arg \max_{x} p(x) = \arg \max \log p(x)$$

are given by the zeros of the score function

$$s_{\theta}(x) = \nabla \log p(x) = 0$$

Examples of score functions

- one-dimensional Gaussian density $p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $s(x) = \frac{\partial}{\partial x}\log p(x) = \frac{x-\mu}{\sigma^2}$
- $\begin{tabular}{ll} \hline & \mbox{multivariate Gaussian } s(x) = \Sigma^{-1}(x-\mu) \\ & \mbox{note } s(x) = 0 \mbox{ at } x = \mu \\ \hline \end{tabular}$

Examples of score functions

mixture of non-overlapping densities

$$p(x) = \begin{cases} \pi_1 p_1(x) & x \in C_1 \\ \pi_2 p_2(x) & x \in C_2 \end{cases}$$

score function $s(x) = \nabla \log p(x)$ at the interior of these regions are given by*

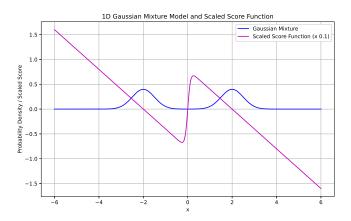
$$\begin{cases} \nabla \log p_1(x) & x \in \text{interior}(C_1) \\ \nabla \log p_2(x) & x \in \text{interior}(C_2) \end{cases}$$

- score function is a mixture of score functions
- ▶ note that the mixing weights π_1 and π_2 are lost!

^{*}note that we need to be careful at the boundary: we are trying to differentiate a function with 0/1 valued indicators, whose ordinary derivates do not exist. Clarke subdifferentials will exist.

Score function of a Gaussian Mixture

for a Gaussian mixture whose components are almost disjoint, we expect the score function to be locally linear



Modeling score functions

neural networks provide an expressive family of functions to model the score function

$$s_{\theta}(x) \approx W_L ... \sigma(W_2 \sigma(W_1 x))$$

where $\theta = \{W_1, ..., W_L\}$ are learned using gradient descent

ightharpoonup after learning $s_{\theta}(x)$, we can sample using Langevin diffusion

$$x_{t+1} = x_t - \epsilon s_{\theta}(x_t) + \sqrt{\epsilon} z_t$$
$$z_t \sim \mathcal{N}(0, I)$$

Sampling using the learned score function

$$x_{t+1} = x_t - \epsilon s_{\theta}(x_t) + \sqrt{\epsilon} z_t$$
$$z_t \sim \mathcal{N}(0, I)$$

- for concave $\log p(x)$, empirical samples converges to p(x) such that $s_{\theta} = \nabla \log p(x)$ as $t \to \infty$ and $\epsilon \to 0$ in terms of Wasserstein distance. Example: log-concave densities, e.g., multivariate Gaussian
 - concave: $\sqrt{\mathrm{KL}(\cdot||p)} \leq \epsilon$ in $O(\frac{d}{\epsilon^4})$ iterations
 - strongly concave: $\sqrt{\mathrm{KL}(\cdot||p)} \leq \epsilon$ in $O(\frac{\kappa d}{\epsilon^2}\log(\frac{1}{\epsilon}))$ iterations
- ▶ for non-convex $\log p(x)$, we converge near stationarity, i.e., the score function $s_{\theta}(x_t)$ almost vanishes

Challenges in fitting score models

ightharpoonup we can consider fitting a score model $s_{\theta}(x)$ via

$$\min_{\theta} \mathbb{E}_{x \sim p(x)} \|s_{\theta}(x) - \nabla \log p(x)\|_{2}^{2}$$

- lacktriangle for natural signals like images and audio, the density p(x) is zero for most of the space
- we can smooth signals by adding Gaussian noise:

$$x+n$$
 where $n \sim \mathcal{N}(0, \sigma^2 I)$

which makes the density better behaved

Denoising Score Matching

we fit a model the the score function of a noise-perturbed distribution

$$p(x) \to q_{\sigma}(\tilde{x}|x) \to q_{\sigma}(\tilde{x})$$

the conditional distribution $q_{\sigma}(\tilde{x}|x)$ is an additive Gaussian corruption channel

• when $q_{\sigma}(\tilde{x}|x) = \mathcal{N}(\tilde{x}|x,\sigma^2I)$ we have

$$\tilde{x} = x + n$$
 where $n \sim \mathcal{N}(0, \sigma^2 I)$

the score function $\nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}|x) = -\frac{\tilde{x}-x}{\sigma^2}$ since $\tilde{x} \sim \mathcal{N}(x,\sigma^2 I)$

Denoising Score Matching

score function fitting problem for noise-perturbed data

$$\min_{\theta} \mathbb{E}_{x \sim p(x)} \| s_{\theta}(\tilde{x}) - \nabla \log q_{\sigma}(x) \|_{2}^{2}$$

▶ is identical to (requires a short derivation)

$$\min_{\theta} \mathbb{E}_{x \sim p(x)} \mathbb{E}_{\tilde{x} \sim q_{\sigma}(\tilde{x}|x)} \|s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log q(\tilde{x}|x)\|_{2}^{2}$$

for the Gaussian corruption, we have

$$\min_{\theta} \mathbb{E}_{x \sim p(x)} \mathbb{E}_{\tilde{x} \sim \mathcal{N}(x, \sigma^2 I)} \| s_{\theta}(\tilde{x}) - \frac{\tilde{x} - x}{\sigma^2} \|_2^2$$

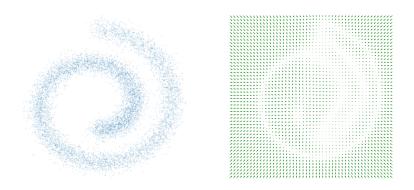
Denoising Score Matching

alternatively

$$\min_{\theta} \mathbb{E}_{x \sim p(x)} \mathbb{E}_{n \sim \mathcal{N}(0, I)} \left\| s_{\theta}(x + \sigma n) - \frac{n}{\sigma} \right\|_{2}^{2}$$

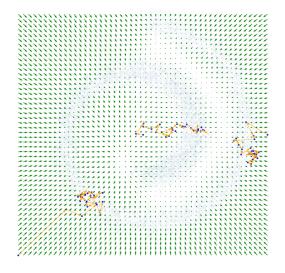
score function predicts the noise from noisy samples

Numerical Example of Score Matching



swiss roll dataset (left) and learned score function via a ReLU NN (right) (slide credit: Kevin Murphy)

Numerical Example of Score Matching



trajectories generated by Langevin diffusion (3 trials) (slide credit: Kevin Murphy)

Challenges in Denoising Score Matching

- ightharpoonup score function fit is less accurate over low density regions of p(x) since we observe few samples
- increasing additive noise variance helps estimating a better score function, however we learn a noisier perturbed distribution
- sampling can get stuck at isolated modes

Challenges in Denoising Score Matching

- ightharpoonup score function fit is less accurate over low density regions of p(x) since we observe few samples
- increasing additive noise variance helps estimating a better score function, however we learn a noisier perturbed distribution
- sampling can get stuck at isolated modes
- idea: use multiple scales of noise (Song and Ermon, Generative Modeling by Estimating Gradients of the Data Distribution, 2019)

Multiple scales of noise

we perturb data by adding Gaussian noise of standard deviation $\sigma_1, \sigma_2, ..., \sigma_L$ such that $\sigma_1 \leq \sigma_2 \leq ... \leq \sigma_L$ i.e, given a data sample x, we generate $x + \mathcal{N}(0, \sigma_1 I)$, $x + \mathcal{N}(0, \sigma_2 I)$, ..., $x + \mathcal{N}(0, \sigma_L I)$

• we fit a score function model $s_{\theta}(x,\sigma)$ which is also a function of the noise level σ , e.g., a neural network with inputs x and σ

Multiple scales of noise

we perturb data by adding Gaussian noise of standard deviation $\sigma_1, \sigma_2, ..., \sigma_L$ such that $\sigma_1 \leq \sigma_2 \leq ... \leq \sigma_L$ i.e, given a data sample x, we generate $x + \mathcal{N}(0, \sigma_1 I)$, $x + \mathcal{N}(0, \sigma_2 I)$, ..., $x + \mathcal{N}(0, \sigma_L I)$

• we fit a score function model $s_{\theta}(x, \sigma)$ which is also a function of the noise level σ

Fitting a noise conditional score function

lacktriangle we minimize a weighted combination of denoising score matching losses over L noise scales

$$\min_{\theta} \sum_{i=1}^{L} \lambda_{i} \mathbb{E}_{x \sim p(x)} \mathbb{E}_{n \sim \mathcal{N}(0,I)} \left\| s_{\theta}(x + \sigma_{i}n, \sigma_{i}) - \frac{n}{\sigma_{i}} \right\|_{2}^{2}$$

Fitting a noise conditional score function

lacktriangle we minimize a weighted combination of denoising score matching losses over L noise scales

$$\min_{\theta} \sum_{i=1}^{L} \lambda_{i} \mathbb{E}_{x \sim p(x)} \mathbb{E}_{n \sim \mathcal{N}(0,I)} \left\| s_{\theta}(x + \sigma_{i}n, \sigma_{i}) - \frac{n}{\sigma_{i}} \right\|_{2}^{2}$$

lacktriangle we can pick weights proportional to variance, $\lambda_i=\sigma_i^2$

$$\min_{\theta} \sum_{i=1}^{L} \sigma_i \mathbb{E}_{x \sim p(x)} \mathbb{E}_{n \sim \mathcal{N}(0,I)} \left\| s_{\theta}(x + \sigma_i n, \sigma_i) - \frac{n}{\sigma_i} \right\|_2^2$$

which simplifies to

$$\min_{\theta} \sum_{i=1}^{L} \mathbb{E}_{x \sim p(x)} \mathbb{E}_{n \sim \mathcal{N}(0,I)} \left\| \sigma_{i} s_{\theta}(x + \sigma_{i} n, \sigma_{i}) - n \right\|_{2}^{2}$$



Algorithm for fiting a conditional score function

- ▶ choose a sequence of decaying noise standard deviations, e.g., $\sigma_1=1,\sigma_2=0.5,...,\sigma_{10}=0.01$ for L=10 noise levels (a standard deviation of 0.01 is almost indistinguishable to human eyes for images)
- ▶ sample a batch of data points $x_1, ..., x_N \sim p(x)$
- ightharpoonup sample a batch of Gaussian noise $n_1,...,n_N$
- > sample a batch of noise scale indices $i_1,...,i_N \sim \text{Uniform}\{1,2,...,L\}$ fit a noise conditional score model $s_{\theta}(x+\sigma n,\sigma) \approx n$, e.g., a DNN, to

$$\min_{\theta} \frac{1}{N} \sum_{k=1}^{N} \left\| \sigma_{i_k} s_{\theta}(x + \sigma_{i_k} n, \sigma_{i_k}) - n_k \right\|_2^2$$

Annealed Langevin Dynamics

- ▶ sample using noise levels $\sigma_1, \sigma_2, ..., \sigma_L$ sequentially as follows
- begin by sampling using the Langevin process using the smallest noise scale
 - anneal down the noise level
 - use the generated sample as initialization for the next level
 - repeat the Langevin sampling process

Annealed Langevin Dynamics

```
\begin{split} \text{for } i &\in \{1,...,L\} \\ \epsilon_i &= \epsilon_0 \, \sigma_i^2/\sigma_L^2 \\ \text{for } t &\in \{1,...,T\} \\ z_{t-1} &\sim N(0,I) \\ x_t &= x_{t-1} - \frac{\epsilon_i}{2} s_\theta(x_{t-1},\sigma_i) + \sqrt{\epsilon_i} z_{t-1} \\ \text{end} \\ x_0 &\leftarrow x_T \end{split}
```

Denoising Diffusion Models

lacktriangle Annealed sampling process can be simplified by taking T=1

$$\begin{aligned} \text{for } i &\in \{1,...,L\} \\ z_{i-1} &\sim N(0,I) \\ x_i &= x_{i-1} - \frac{\epsilon_i}{2} s_\theta(x_{i-1},\sigma_i) + \sqrt{\epsilon_i} z_{i-1} \end{aligned}$$

end

each step of applying the score function can be viewed as denoising, i.e., reversing the noise corruption process

Image generation

CelebA-HQ 256x256 samples.

LSUN 256x256 Church, Bedroom, and Cat samples. Notice that our models occasionally generate dataset watermarks.

References

- Stanford CS236 Deep Generative Models course https://deepgenerativemodels.github.io/
- ► Log-Concave Sampling, Sinho Chewi https://chewisinho.github.io/main.pdf
- Kevin Murphy "Probabilistic Machine Learning: Advanced Topics" (2023)
 - https://probml.github.io/pml-book/
- Tim Tsz-Kit Lau, Han Liu, Thomas Pock, Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms, 2023.