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Stochastic Gradient Descent

Ti41 = Tt — QG

» g; is an unbiased estimate of a subgradient at x;

Elg:] € Of ()

» eventually iterates are near a global optimum of f(z) when
f(x) is convex and the step-sizes «; are chosen appropriately

» for non-convex differentiable functions, iterates are eventually
near a stationary point V f(x) = 0 under certain functional
assumptions* on f(x)

*e.g, when the gradients are Lipschitz continuous



Langevin Diffusion (Langevin Monte Carlo)

Consider gradient descent steps function for a function f(x) with
additional Gaussian noise

€
Tpp1 = Tp — ivf(fl?t) + Vez

where 2, ~ N(0,1)
» random sample generation method
P noisy gradient descent updates
» the distribution of x; converges to a distribution proportional

to
1@

as t — 0o and € — 0 under certain assumptions* on f(x)

» known as the Langevin Monte Carlo method

*e.g., when f(x) is convex



Comparing noisy and ordinary gradient descent

example: consider the quadratic function

> f@) =50 — S @ - p)
where ;1 € R? is a known mean vector and ¥ € S¥*? is a
p.s.d. covariance matrix

> identical to the least squares objective f(z) = 3| Az — b||3
where A =X"1/2 and b= 2"1/2

» ordinary gradient descent

Ti41 = Tt — GVf(ZEt)
=z —eX Nz — p)



Comparing noisy and ordinary gradient descent

fla) = o~ 'S - p)

» ordinary gradient descent
Tip1 = Xp — 6271(5[,‘15 — )
» noisy gradient descent (Langevin Diffusion)

Tpp1 = a2 — €N H(mp — ) + ez
Zt ~ N(O, I)



Comparing noisy and ordinary gradient descent

» ordinary gradient descent

Tip1 = Xp — EE_I(SL‘t — 1)



Comparing noisy and ordinary gradient descent
» noisy gradient descent (Langevin Diffusion)

T4l = Tt — 62_1([1715 — ,u,) + \@zt
2t~ N(O, I)



Variants of the Langevin Sampler

» plain Langevin diffusion
€
Tpp1 = Ty — ivf(l‘t) + Vez
» second-order (i.e., preconditioned) Langevin

6 J—
tpe1 = 20— 5 (V2f(2) IV () + (V2 ()2 Vex
» proximal Langevin for e~ f(@)—g(z)

€y
Ti41 = Proxy, <$t Vf(xe) + \[zt)

when g is non-differentiable



Variants of the Langevin Sampler

» primal-dual Langevin for e~/(#)~9(D2)

€ ~
Tyl = pI'OXAf (xt — §DT'LLt + \/EZt)
Uty1 = Prox,, (un + AD(2x441 — xt))

Upp1 = Ug + T(Upp1 — Ug)

> the second term can represent non-differentiable regularizers,
e.g., total variation ||Dz|; via g(-) = | - |1
» analogue of Douglas-Rachford splitting and ADMM

» mirror-Langevin: analogue of mirror descent



Langevin Diffusion and Score Functions

P> suppose we want to generate samples from a probability
distribution p(x)

» let f(x) := logp(x) and apply plain Langevin diffusion

Tip1 = 2 — € Viog p(z) +v/ez
(z)
zt ~ N(O,I)

» s(x) is the gradient of the log-likelihood

v

s(x) is called the score function

> typically we have parameters 6 in our score function model
5(@) = s(x)



Score functions

» the score function sy(x) = Vlogpg(x) scores the values of x
as it assumes values from the distribution p(z)

> scores near zero are good scores and scores different from zero
are bad scores

P stationary points in the maximum likelihood objective
arg max p(x) = arg max log p(z)
x
are given by the zeros of the score function

so(z) = Vlogp(z) =0



Examples of score functions

» one-dimensional Gaussian density p(x) =

s(x) = g logp(x) = =
» multivariate Gaussian s(z) = X~ (z — )

note s(z) =0 atx = p



Examples of score functions

» mixture of non-overlapping densities

p(z) = mipi(z) x € Cy

mopa(r) € Co

score function s(x) = Vlog p(z) at the interior of these
regions are given by*

Vlogpi(z) x € interior(Ch)
Vlogpa(x) =z € interior(Cs)

» score function is a mixture of score functions

P> note that the mixing weights 71 and w9 are lost!

*note that we need to be careful at the boundary: we are trying to differ-
entiate a function with 0/1 valued indicators, whose ordinary derivates do not
exist. Clarke subdifferentials will exist.



Score function of a Gaussian Mixture

» for a Gaussian mixture whose components are almost disjoint,
we expect the score function to be locally linear

1D Gaussian Mixture Model and Scaled Score Function
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Modeling score functions

» neural networks provide an expressive family of functions to
model the score function

SQ(CC) = WL...O'(WQO'(Wl.CC)

where 0 = {W,..., W} are learned using gradient descent

» after learning sg(x), we can sample using Langevin diffusion

Tip1 = ¢ — €59(T¢) + Vez

ZtNN(O,I)



Sampling using the learned score function

Tip1 = ¢ — €5p(T¢) + Vez

Zt NN(O,I)

» for concave log p(x), empirical samples converges to p(z)
such that sy = Vlogp(x) as t — oo and € — 0 in terms of
Wasserstein distance. Example: log-concave densities, e.g.,
multivariate Gaussian

> concave: /KL(:||p) < € in O(e%) iterations
> strongly concave: /KL(:|[p) < € in O(%¢ log(?)) iterations
» for non-convex log p(z), we converge near stationarity, i.e.,
the score function sg(xz;) almost vanishes



Challenges in fitting score models

> we can consider fitting a score model sg(x) via
ngnEpr(z)”SG(x) - VIng(CU)H%

» for natural signals like images and audio, the density p(x) is
zero for most of the space

P> we can smooth signals by adding Gaussian noise:
T+n where n ~ N(0,0%])

which makes the density better behaved



Denoising Score Matching

>

>

we fit a model the the score function of a noise-perturbed
distribution

p(x) = 4o (Z[7) = ¢5(7)

the conditional distribution ¢, (Z|z) is an additive Gaussian
corruption channel

when ¢, (Z|z) = N(|z,02I) we have
T=x+n wheren~ N(0,0%I)

T—x
o2

the score function V;log ¢, (Z|z) = — since

T~ N(x,0%I)



Denoising Score Matching

» score function fitting problem for noise-perturbed data

mein Epmp(z) l|so(2) — Vlog gy (x) ”%

» is identical to (requires a short derivation)

min By o) B g, (340) |50 (%) — Vi log g(Z|)]3
» for the Gaussian corruption, we have

. N T
mam Eccwp(a:)E:ENN(x,o2I)|’89($) - 72”%



Denoising Score Matching

P alternatively
. n 2
min Eyop(@)Enno,1) HSH(x +on) - o H2

» score function predicts the noise from noisy samples



Numerical Example of Score Matching

swiss roll dataset (left) and learned score function via a ReLU NN
(right) (slide credit: Kevin Murphy)



Numerical Example of Score Matching
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Challenges in Denoising Score Matching

» score function fit is less accurate over low density regions of
p(z) since we observe few samples

P increasing additive noise variance helps estimating a better
score function, however we learn a noisier perturbed
distribution

» sampling can get stuck at isolated modes



Challenges in Denoising Score Matching

» score function fit is less accurate over low density regions of
p(z) since we observe few samples

P increasing additive noise variance helps estimating a better
score function, however we learn a noisier perturbed
distribution

» sampling can get stuck at isolated modes

» idea: use multiple scales of noise (Song and Ermon,
Generative Modeling by Estimating Gradients of the Data
Distribution, 2019)



Multiple scales of noise

> we perturb data by adding Gaussian noise of standard
deviation o1, 09, ...,0, such that o1 < 09 < ... <0y,

i.e, given a data sample x, we generate z + N (0,011),
x+N(0,090), ..., 2+ N(0,0L])

> we fit a score function model sy(x, o) which is also a function
of the noise level o, e.g., a neural network with inputs z and o



Multiple scales of noise

» we perturb data by adding Gaussian noise of standard
deviation 01,09, ...,0r, such that o1 < 09 < ... < 0op,

i.e, given a data sample x, we generate z + N (0,011),
x+N(0,090), ..., x+N(0,0.1)

> we fit a score function model sg(x, o) which is also a function
of the noise level o



Fitting a noise conditional score function

> we minimize a weighted combination of denoising score
matching losses over L noise scales

n 112

L
mein z; )\iEpr(x)EnNN(O,I) Hse(x + o, 0;) — ;i
1=

2



Fitting a noise conditional score function
> we minimize a weighted combination of denoising score

matching losses over L noise scales

L
mgin ; AN op(@) Enenro,1) H39 (x 4+ oin,0;) — 0% Z
> we can pick weights proportional to variance, \; = o;
L "2
meln; Oillsp(a)En~n(0,1) HS(?(JU +oin,0i) — o7 Il
which simplifies to
2

oisg(x + oin, 0y) — nH2

L
Hbin Z Emwp(m)Ean(O,I) ‘
=1

Generative Modeling by Estimating Gradients of the Data Distribution Y. Song, S. Ermon. NeurlPS 2019



Algorithm for fiting a conditional score function

» choose a sequence of decaying noise standard deviations, e.g.,
o1 =1,09 =0.5,...,010 = 0.01 for L = 10 noise levels (a
standard deviation of 0.01 is almost indistinguishable to
human eyes for images)

» sample a batch of data points z1, ...,xx ~ p(x)

v

sample a batch of Gaussian noise nq,...,ny

» sample a batch of noise scale indices

i1, ..., iy ~Uniform{1,2, ..., L}

fit a noise conditional score model sy(z + on,o) ~n, e.g., a
DNN, to

N 2
E ‘JZkSQ x +o;,n,0,) —nkH2

k:




Annealed Langevin Dynamics

» sample using noise levels o1, 09, ..., oy, sequentially as follows
P begin by sampling using the Langevin process using the
smallest noise scale
» anneal down the noise level
P use the generated sample as initialization for the next level
» repeat the Langevin sampling process



Annealed Langevin Dynamics

forie{1,...,L}
€ =epol/or
fort e {1,..,T}
21~ N(0,1)
Ty =m1 — §50(T-1,00) +\/€z-1
end
xo T

end



Denoising Diffusion Models
» Annealed sampling process can be simplified by taking T'=1
forie {1,...,L}
zi—1 ~ N(0,1)
v =xi1 — 359(Tio1,00) + €z
end

» each step of applying the score function can be viewed as
denoising, i.e., reversing the noise corruption process

Fixed forward diffusion process

Noise

Generative reverse denoising process



Image generation

yl LSUN 256x256 Church, Bedroom, and Cat samples. Notice that our models
CelebA-HQ 256x256 samples. i generate dataset
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