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Stochastic Gradient Descent

xt+1 = xt − αtgt

▶ gt is an unbiased estimate of a subgradient at xt

E[gt] ∈ ∂f(xt)

▶ eventually iterates are near a global optimum of f(x) when
f(x) is convex and the step-sizes αt are chosen appropriately

▶ for non-convex differentiable functions, iterates are eventually
near a stationary point ∇f(x) = 0 under certain functional
assumptions∗ on f(x)

∗e.g, when the gradients are Lipschitz continuous



Langevin Diffusion (Langevin Monte Carlo)

Consider gradient descent steps function for a function f(x) with
additional Gaussian noise

xt+1 = xt −
ϵ

2
∇f(xt) +

√
ϵzt

where zt ∼ N (0, I)

▶ random sample generation method

▶ noisy gradient descent updates

▶ the distribution of xt converges to a distribution proportional
to

e−f(x)

as t→∞ and ϵ→ 0 under certain assumptions∗ on f(x)

▶ known as the Langevin Monte Carlo method

∗e.g., when f(x) is convex



Comparing noisy and ordinary gradient descent

example: consider the quadratic function

▶ f(x) = 1
2(x− µ)TΣ−1(x− µ)

where µ ∈ Rd is a known mean vector and Σ ∈ Sd×d is a
p.s.d. covariance matrix

▶ identical to the least squares objective f(x) = 1
2∥Ax− b∥22

where A = Σ−1/2 and b = Σ−1/2µ

▶ ordinary gradient descent

xt+1 = xt − ϵ∇f(xt)
= xt − ϵΣ−1(xt − µ)



Comparing noisy and ordinary gradient descent

f(x) =
1

2
(x− µ)TΣ−1(x− µ)

▶ ordinary gradient descent

xt+1 = xt − ϵΣ−1(xt − µ)

▶ noisy gradient descent (Langevin Diffusion)

xt+1 = xt − ϵΣ−1(xt − µ) +
√
ϵzt

zt ∼ N (0, I)



Comparing noisy and ordinary gradient descent

▶ ordinary gradient descent

xt+1 = xt − ϵΣ−1(xt − µ)



Comparing noisy and ordinary gradient descent

▶ noisy gradient descent (Langevin Diffusion)

xt+1 = xt − ϵΣ−1(xt − µ) +
√
ϵzt

zt ∼ N (0, I)



Variants of the Langevin Sampler

▶ plain Langevin diffusion

xt+1 = xt −
ϵ

2
∇f(xt) +

√
ϵzt

▶ second-order (i.e., preconditioned) Langevin

xt+1 = xt −
ϵ

2
(∇2f(x))−1∇f(xt) + (∇2f(x))−1/2√ϵzt

▶ proximal Langevin for e−f(x)−g(x)

xt+1 = proxλg

(
xt −

ϵ

2
∇f(xt) +

√
ϵzt

)
when g is non-differentiable



Variants of the Langevin Sampler

▶ primal-dual Langevin for e−f(x)−g(Dx)

xt+1 = proxλf

(
xt −

ϵ

2
DT ũt +

√
ϵzt

)
ut+1 = proxλg

(
un + λD(2xt+1 − xt)

)
ũt+1 = ũt + τ(ut+1 − ut)

▶ the second term can represent non-differentiable regularizers,
e.g., total variation ∥Dx∥1 via g(·) = ∥ · ∥1

▶ analogue of Douglas-Rachford splitting and ADMM

▶ mirror-Langevin: analogue of mirror descent



Langevin Diffusion and Score Functions

▶ suppose we want to generate samples from a probability
distribution p(x)

▶ let f(x) := log p(x) and apply plain Langevin diffusion

xt+1 = xt − ϵ∇ log p(x)︸ ︷︷ ︸
s(x)

+
√
ϵzt

zt ∼ N (0, I)

▶ s(x) is the gradient of the log-likelihood

▶ s(x) is called the score function

▶ typically we have parameters θ in our score function model
s(x) := sθ(x)



Score functions

▶ the score function sθ(x) = ∇ log pθ(x) scores the values of x
as it assumes values from the distribution p(x)

▶ scores near zero are good scores and scores different from zero
are bad scores

▶ stationary points in the maximum likelihood objective

argmax
x

p(x) = argmax log p(x)

are given by the zeros of the score function

sθ(x) = ∇ log p(x) = 0



Examples of score functions

▶ one-dimensional Gaussian density p(x) = 1√
2π
e−

(x−µ)2

2σ2

s(x) = ∂
∂x log p(x) =

x−µ
σ2

▶ multivariate Gaussian s(x) = Σ−1(x− µ)

note s(x) = 0 at x = µ



Examples of score functions

▶ mixture of non-overlapping densities

p(x) =

{
π1p1(x) x ∈ C1

π2p2(x) x ∈ C2

score function s(x) = ∇ log p(x) at the interior of these
regions are given by∗{

∇ log p1(x) x ∈ interior(C1)

∇ log p2(x) x ∈ interior(C2)

▶ score function is a mixture of score functions

▶ note that the mixing weights π1 and π2 are lost!

∗note that we need to be careful at the boundary: we are trying to differ-
entiate a function with 0/1 valued indicators, whose ordinary derivates do not
exist. Clarke subdifferentials will exist.



Score function of a Gaussian Mixture

▶ for a Gaussian mixture whose components are almost disjoint,
we expect the score function to be locally linear
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Modeling score functions

▶ neural networks provide an expressive family of functions to
model the score function

sθ(x) ≈WL...σ(W2σ(W1x)

where θ = {W1, ...,WL} are learned using gradient descent

▶ after learning sθ(x), we can sample using Langevin diffusion

xt+1 = xt − ϵsθ(xt) +
√
ϵzt

zt ∼ N (0, I)



Sampling using the learned score function

xt+1 = xt − ϵsθ(xt) +
√
ϵzt

zt ∼ N (0, I)

▶ for concave log p(x), empirical samples converges to p(x)
such that sθ = ∇ log p(x) as t→∞ and ϵ→ 0 in terms of
Wasserstein distance. Example: log-concave densities, e.g.,
multivariate Gaussian
▶ concave:

√
KL(·||p) ≤ ϵ in O( d

ϵ4 ) iterations
▶ strongly concave:

√
KL(·||p) ≤ ϵ in O(κdϵ2 log( 1ϵ )) iterations

▶ for non-convex log p(x), we converge near stationarity, i.e.,
the score function sθ(xt) almost vanishes



Challenges in fitting score models

▶ we can consider fitting a score model sθ(x) via

min
θ

Ex∼p(x)∥sθ(x)−∇ log p(x)∥22

▶ for natural signals like images and audio, the density p(x) is
zero for most of the space

▶ we can smooth signals by adding Gaussian noise:

x+ n where n ∼ N (0, σ2I)

which makes the density better behaved



Denoising Score Matching

▶ we fit a model the the score function of a noise-perturbed
distribution

▶
p(x)→ qσ(x̃|x)→ qσ(x̃)

the conditional distribution qσ(x̃|x) is an additive Gaussian
corruption channel

▶ when qσ(x̃|x) = N (x̃|x, σ2I) we have

x̃ = x+ n where n ∼ N (0, σ2I)

the score function ∇x̃ log qσ(x̃|x) = − x̃−x
σ2 since

x̃ ∼ N (x, σ2I)



Denoising Score Matching

▶ score function fitting problem for noise-perturbed data

min
θ

Ex∼p(x)∥sθ(x̃)−∇ log qσ(x)∥22

▶ is identical to (requires a short derivation)

min
θ

Ex∼p(x)Ex̃∼qσ(x̃|x)∥sθ(x̃)−∇x̃ log q(x̃|x)∥22

▶ for the Gaussian corruption, we have

min
θ

Ex∼p(x)Ex̃∼N (x,σ2I)∥sθ(x̃)−
x̃− x

σ2
∥22



Denoising Score Matching

▶ alternatively

min
θ

Ex∼p(x)En∼N (0,I)

∥∥∥sθ(x+ σn)− n

σ

∥∥∥2
2

▶ score function predicts the noise from noisy samples



Numerical Example of Score Matching

swiss roll dataset (left) and learned score function via a ReLU NN
(right) (slide credit: Kevin Murphy)



Numerical Example of Score Matching

trajectories generated by Langevin diffusion (3 trials) (slide credit:
Kevin Murphy)



Challenges in Denoising Score Matching

▶ score function fit is less accurate over low density regions of
p(x) since we observe few samples

▶ increasing additive noise variance helps estimating a better
score function, however we learn a noisier perturbed
distribution

▶ sampling can get stuck at isolated modes

▶ idea: use multiple scales of noise (Song and Ermon,
Generative Modeling by Estimating Gradients of the Data
Distribution, 2019)
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Multiple scales of noise

▶ we perturb data by adding Gaussian noise of standard
deviation σ1, σ2, ..., σL such that σ1 ≤ σ2 ≤ ... ≤ σL

i.e, given a data sample x, we generate x+N (0, σ1I),
x+N (0, σ2I), ... , x+N (0, σLI)

▶ we fit a score function model sθ(x, σ) which is also a function
of the noise level σ, e.g., a neural network with inputs x and σ



Multiple scales of noise

▶ we perturb data by adding Gaussian noise of standard
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▶ we fit a score function model sθ(x, σ) which is also a function
of the noise level σ



Fitting a noise conditional score function
▶ we minimize a weighted combination of denoising score

matching losses over L noise scales

min
θ

L∑
i=1

λiEx∼p(x)En∼N (0,I)

∥∥∥sθ(x+ σin, σi)−
n

σi

∥∥∥2
2

▶ we can pick weights proportional to variance, λi = σ2
i

min
θ

L∑
i=1

σiEx∼p(x)En∼N (0,I)

∥∥∥sθ(x+ σin, σi)−
n

σi

∥∥∥2
2

which simplifies to

min
θ

L∑
i=1

Ex∼p(x)En∼N (0,I)

∥∥∥σisθ(x+ σin, σi)− n
∥∥∥2
2

Generative Modeling by Estimating Gradients of the Data Distribution Y. Song, S. Ermon. NeurIPS 2019
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Algorithm for fiting a conditional score function

▶ choose a sequence of decaying noise standard deviations, e.g.,
σ1 = 1, σ2 = 0.5, ..., σ10 = 0.01 for L = 10 noise levels (a
standard deviation of 0.01 is almost indistinguishable to
human eyes for images)

▶ sample a batch of data points x1, ..., xN ∼ p(x)

▶ sample a batch of Gaussian noise n1, ..., nN

▶ sample a batch of noise scale indices
i1, ..., iN ∼Uniform{1, 2, ..., L}
fit a noise conditional score model sθ(x+ σn, σ) ≈ n, e.g., a
DNN, to

min
θ

1

N

N∑
k=1

∥∥∥σiksθ(x+ σikn, σik)− nk

∥∥∥2
2



Annealed Langevin Dynamics

▶ sample using noise levels σ1, σ2, ..., σL sequentially as follows
▶ begin by sampling using the Langevin process using the

smallest noise scale
▶ anneal down the noise level
▶ use the generated sample as initialization for the next level
▶ repeat the Langevin sampling process



Annealed Langevin Dynamics

for i ∈ {1, ..., L}
ϵi = ϵ0 σ

2
i /σ

2
L

for t ∈ {1, ..., T}
zt−1 ∼ N(0, I)

xt = xt−1 − ϵi
2 sθ(xt−1, σi) +

√
ϵizt−1

end

x0 ← xT

end



Denoising Diffusion Models

▶ Annealed sampling process can be simplified by taking T = 1

for i ∈ {1, ..., L}
zi−1 ∼ N(0, I)

xi = xi−1 − ϵi
2 sθ(xi−1, σi) +

√
ϵizi−1

end

▶ each step of applying the score function can be viewed as
denoising, i.e., reversing the noise corruption process



Image generation
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