Decomposition Applications

e rate control

e single commodity network flow
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Rate control setup

e n flows, with fixed routes, in a network with m links
e variable f; > 0 denotes the rate of flow j

o flow utility is U; : R — R, strictly concave, increasing
e traffic ¢; on link ¢ is sum of flows passing through it

e t = Rf, where R is the routing matrix

R 1 flow j passes over link ¢
"1 0 otherwise

e link capacity constraint: ¢t < ¢
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Rate control problem

maximize  U(f) = >_"_, U;(f;)
subject to Rf <¢

e convex problem

e dual decomposition gives decentralized method
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Rate control Lagrangian

Lagrangian (for minimizing —U) is
~U(f) + M (Rf —¢)

— —)\Tc+z )f])

L(f, )

e )\; is price (per unit flow) for using link ¢

o ro)\ is the sum of prices along route j
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Rate control dual

dual function is

9N = —ATety mf(=U;(fi) + (rf N )
- —ATC—Z(—U])*(—rfA),

dual rate control problem:

maximize —Alc— Z?Zl(—Uj)*(—rf)\)
subjectto A >0
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subgradient of negative dual:
Rf —ced(-g)(N)

where j_i7 — argmax (Uj(fj) — ("“;f)‘)fj)
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Dual decomposition rate control algorithm

given initial link price vector A = 0 (e.g., A =1).
repeat
1. Sum link prices along each route.
Calculate A; = r;‘-ﬁ)\.
2. Optimize flows (separately) using flow prices.
fj = argmax (Uj(fj) — Ajf])

3. Calculate link capacity margins.

s:=c—Rf.
4. Update link prices.
A= (A —ags),.
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Dual decomposition rate control algorithm

e decentralized:

— links only need to know the flows that pass through them
— flows only need to know prices on links they pass through

e prices converge to optimal; so do flows (since U is strictly concave)

e iterates can be (and often are) infeasible, i.e., Rf A ¢
(but we do have Rf < c in the limit)

e have upper bound —g(\) on optimal utility U*
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Generating feasible flows

o define n; =t;/c; = (Rf)i/ci

— n; < 1 means link 7 is under capacity
— 1; > 1 means link 7 is over capacity

o define £ as

ffeas _ fj

7 max{n; | flow j passes over link i}

o ffeas will be feasible, even if f is not

e finding £ is also decentralized
(in fact this is a step in primal decomposition)
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Example
e n = 10 flows, m = 12 links; 3 or 4 links per flow
e link capacities chosen randomly, uniform on [0.1, 1]
e U;(f;) =log f; (can be argued to give proportionally fair flows)

e optimal flow as a function of price:

fj = argmaX(Uj(fj) — Ajfj) = 1//\]

e initial prices: A =1

e constant stepsize ap = 3
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Convergence of primal and dual objectives
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Single commodity network flow setup

e connected, directed graph with n links, p nodes

e variable z; denotes flow (traffic) on arc j

e given external source (or sink) flow s; at node i, 175 = 0

e node incidence matrix A € RP*"™

Az’j = —1

e flow conservation: Az +s =0

o d(z) =2 5_, ¢j(x;) is separable
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arc j enters 1
arc j leaves node 17
otherwise

convex flow cost function
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Network flow problem
optimal single commodity network flow problem:

minimize 2?21 ij(xj)
subject to Ax+s=0

e convex, readily solved with standard methods

e dual decomposition yields decentralized solution method
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Network flow Lagrangian
Lagrangian is
L(z,v) = ¢(z)+v' (Az+s)

vls o+ Z (gbj(:cj) + (afy)xj)

e a; is jth column of A

e we'll interpret v; as potential at node

e we use Av; to denote a]TV, which is potential difference across edge j
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Network flow dual

dual function:

g(v) = inf L(x,v)

x

= vlis+ Z 1£1f (j(x;) +

= Vs—Zgb —Av;)

dual problem: maximize g(v)
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Recovering primal from dual

*

e strictly convex ¢; means unique minimizer z7(y) of ¢;(x;) — yx;

o if ¢; is differentiable, z7(y) = (¢/;)~'(y) (inverse of derivative function)

e optimal flows, from optimal potentials: z7 = z7(—Av7)

e subgradient of negative dual function:
—(Az"(Av) + 5) € 9(—g) (V)

(negative of flow conservation residual)
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Dual decomposition network flow algorithm

given initial potential vector v.
repeat

1. Determine link flows from potential differences.

rj =z (-Av;), j=1,...,n

2. Compute flow surplus at each node.
Sii=alx+s;, i=1,...,p.

3. Update node potentials.
vi:=v; +apS;, 1=1,...,p.

« IS an appropriate step size
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Dual decomposition network flow algorithm

e decentralized:

— flow calculated from potential difference across edge
— node potential updated from its own flow surplus

e g(v) gives lower bound on p*

e flow conservation Ax + s = 0 only holds in limit
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Electrical network analogy

e clectrical network with node incidence matrix A, nonlinear resistors in
branches

e variable z; is the current flow in branch j

e source s; is external current injected at node ¢ (must sum to zero)

e flow conservation equation Az 4+ s = 0 is Kirkhoff Current Law (KCL)
e dual variables are node potentials; Av; is jth branch voltage

e branch current-voltage characteristic is z; = 27 (—Av;)

then, current and potentials in circuit are optimal flows and dual variables
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Example: Minimum queueing delay

flow cost function

6;(r;) = —2—,  dome; =[0,c;)

Cj—$j

where c; > 0 are given link capacities

(¢;(z;) gives expected waiting time in queue with exponential arrivals at
rate x;, exponential service at rate cj)

conjugate Is
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cost function ¢(x) (left) and its conjugate ¢*(y) (right), c=1
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(note that conjugate is differentiable)
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ZC;(—AVJ'), for Cj =1
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gives flow as function of potential difference across link
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A specific example

network with 5 nodes, 7 links, capacities ¢; = 1
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Optimal flow

optimal flows shown as width of arrows; optimal dual variables shown in
nodes; potential differences shown on links

EE364b, Stanford University

24



Convergence of dual function

fixed step size rules, « = 0.3, 1, 3
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k
for a = 1, converges to p* = 2.48 in around 40 iterations
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Convergence of primal residual
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Convergence of dual variables

(%) versus iteration number k, fixed step size rule a =1
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(v5 is fixed as zero)
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