# **Decomposition Applications**

• rate control

• single commodity network flow

#### Rate control setup

- n flows, with fixed routes, in a network with m links
- variable  $f_j \ge 0$  denotes the rate of flow j
- flow utility is  $U_j : \mathbf{R} \to \mathbf{R}$ , strictly concave, increasing
- traffic  $t_i$  on link i is sum of flows passing through it
- t = Rf, where R is the routing matrix

$$R_{ij} = \begin{cases} 1 & \text{flow } j \text{ passes over link } i \\ 0 & \text{otherwise} \end{cases}$$

• link capacity constraint:  $t \preceq c$ 

# Rate control problem

maximize 
$$U(f) = \sum_{j=1}^{n} U_j(f_j)$$
  
subject to  $Rf \leq c$ 

- convex problem
- dual decomposition gives decentralized method

#### **Rate control Lagrangian**

Lagrangian (for minimizing -U) is

$$L(f,\lambda) = -U(f) + \lambda^T (Rf - c)$$
$$= -\lambda^T c + \sum_{j=1}^n \left( -U_j(f_j) + (r_j^T \lambda) f_j \right)$$

- $\lambda_i$  is price (per unit flow) for using link i
- $r_j^T \lambda$  is the sum of prices along route j

# Rate control dual

dual function is

$$g(\lambda) = -\lambda^T c + \sum_{j=1}^n \inf_{f_j} (-U_j(f_j) + (r_j^T \lambda) f_j)$$
$$= -\lambda^T c - \sum_{j=1}^n (-U_j)^* (-r_j^T \lambda),$$

dual rate control problem:

maximize 
$$-\lambda^T c - \sum_{j=1}^n (-U_j)^* (-r_j^T \lambda)$$
  
subject to  $\lambda \succeq 0$ 

subgradient of negative dual:

$$R\bar{f} - c \in \partial(-g)(\lambda)$$

where 
$$\bar{f}_j = \operatorname{argmax} \left( U_j(f_j) - (r_j^T \lambda) f_j \right)$$

#### Dual decomposition rate control algorithm

given initial link price vector  $\lambda \succeq 0$  (e.g.,  $\lambda = 1$ ).

repeat

- 1. Sum link prices along each route. Calculate  $\Lambda_i = r_i^T \lambda$ .
- 2. Optimize flows (separately) using flow prices.  $f_i := \operatorname{argmax} (U_i(f_i) - \Lambda_i f_i).$
- 3. Calculate link capacity margins.

$$s := c - Rf.$$

4. Update link prices.

$$\lambda := (\lambda - \alpha_k s)_+.$$

# Dual decomposition rate control algorithm

- decentralized:
  - links only need to know the flows that pass through them
  - flows only need to know prices on links they pass through
- prices converge to optimal; so do flows (since U is strictly concave)
- iterates can be (and often are) infeasible, *i.e.*,  $Rf \not\leq c$  (but we do have  $Rf \leq c$  in the limit)
- have upper bound  $-g(\lambda)$  on optimal utility  $U^{\star}$

#### **Generating feasible flows**

- define  $\eta_i = t_i/c_i = (Rf)_i/c_i$ 
  - $\eta_i < 1$  means link i is under capacity
  - $\eta_i > 1$  means link i is over capacity
- define  $f^{\text{feas}}$  as

$$f_j^{\text{feas}} = \frac{f_j}{\max\{\eta_i \mid \text{flow } j \text{ passes over link } i\}}$$

- $f^{\text{feas}}$  will be feasible, even if f is not
- finding f<sup>feas</sup> is also decentralized (in fact this is a step in primal decomposition)

#### Example

- n = 10 flows, m = 12 links; 3 or 4 links per flow
- $\bullet$  link capacities chosen randomly, uniform on  $\left[0.1,1\right]$
- $U_j(f_j) = \log f_j$  (can be argued to give proportionally fair flows)
- optimal flow as a function of price:

$$\bar{f}_j = \operatorname{argmax}(U_j(f_j) - \Lambda_j f_j) = 1/\Lambda_j$$

- initial prices:  $\lambda = 1$
- constant stepsize  $\alpha_k = 3$

# **Convergence of primal and dual objectives**



# Maximum capacity violation



#### Single commodity network flow setup

- $\bullet\,$  connected, directed graph with n links, p nodes
- variable  $x_j$  denotes flow (traffic) on arc j
- given external source (or sink) flow  $s_i$  at node i,  $\mathbf{1}^T s = 0$
- node incidence matrix  $A \in \mathbf{R}^{p \times n}$  is

$$A_{ij} = \begin{cases} 1 & \text{arc } j \text{ enters } i \\ -1 & \text{arc } j \text{ leaves node } i \\ 0 & \text{otherwise} \end{cases}$$

- flow conservation: Ax + s = 0
- $\phi(x) = \sum_{j=1}^{n} \phi_j(x_j)$  is separable convex flow cost function

#### Network flow problem

optimal single commodity network flow problem:

minimize 
$$\sum_{j=1}^{n} \phi_j(x_j)$$
  
subject to  $Ax + s = 0$ 

- convex, readily solved with standard methods
- dual decomposition yields decentralized solution method

#### **Network flow Lagrangian**

Lagrangian is

$$L(x,\nu) = \phi(x) + \nu^T (Ax + s)$$
$$= \nu^T s + \sum_{j=1}^n \left( \phi_j(x_j) + (a_j^T \nu) x_j \right)$$

- $a_j$  is *j*th column of A
- we'll interpret  $\nu_i$  as potential at node i
- we use  $\Delta \nu_j$  to denote  $a_j^T \nu$ , which is potential difference across edge j

# Network flow dual

dual function:

$$g(\nu) = \inf_{x} L(x,\nu)$$
  
=  $\nu^{T}s + \sum_{j=1}^{n} \inf_{x_{j}} (\phi_{j}(x_{j}) + (\Delta\nu_{j})x_{j})$   
=  $\nu^{T}s - \sum_{j=1}^{n} \phi_{j}^{*}(-\Delta\nu_{j})$ 

dual problem: maximize  $g(\nu)$ 

#### **Recovering primal from dual**

- strictly convex  $\phi_j$  means unique minimizer  $x_j^*(y)$  of  $\phi_j(x_j) yx_j$
- if  $\phi_j$  is differentiable,  $x_j^*(y) = (\phi'_j)^{-1}(y)$  (inverse of derivative function)
- optimal flows, from optimal potentials:  $x_j^{\star} = x_j^{\star}(-\Delta\nu_j^{\star})$
- subgradient of negative dual function:

$$-(Ax^*(\Delta\nu)+s) \in \partial(-g)(\nu)$$

(negative of flow conservation residual)

# Dual decomposition network flow algorithm

given initial potential vector  $\nu$ .

repeat

1. Determine link flows from potential differences.

 $x_j := x_j^*(-\Delta \nu_j), \quad j = 1, \dots, n.$ 

- 2. Compute flow surplus at each node.  $S_i := a_i^T x + s_i, \quad i = 1, \dots, p.$
- 3. Update node potentials.

 $\nu_i := \nu_i + \alpha_k S_i, \quad i = 1, \dots, p.$ 

 $\alpha_k$  is an appropriate step size

# Dual decomposition network flow algorithm

- decentralized:
  - flow calculated from potential difference across edge
  - node potential updated from its own flow surplus
- $g(\nu)$  gives lower bound on  $p^{\star}$
- flow conservation Ax + s = 0 only holds in limit

#### Electrical network analogy

- electrical network with node incidence matrix A, nonlinear resistors in branches
- variable  $x_j$  is the current flow in branch j
- source  $s_i$  is external current injected at node i (must sum to zero)
- flow conservation equation Ax + s = 0 is Kirkhoff Current Law (KCL)
- dual variables are node potentials;  $\Delta \nu_j$  is *j*th branch voltage
- branch current-voltage characteristic is  $x_j = x_j^*(-\Delta\nu_j)$

then, current and potentials in circuit are optimal flows and dual variables

#### **Example: Minimum queueing delay**

flow cost function

$$\phi_j(x_j) = \frac{x_j}{c_j - x_j}, \quad \text{dom}\,\phi_j = [0, c_j)$$

where  $c_j > 0$  are given *link capacities* 

 $(\phi_j(x_j) \text{ gives expected waiting time in queue with exponential arrivals at rate <math>x_j$ , exponential service at rate  $c_j$ )

conjugate is

$$\phi_j^*(y) = \begin{cases} (\sqrt{c_j y} - 1)^2 & y > 1/c_j \\ 0 & y \le 1/c_j \end{cases}$$

cost function  $\phi(x)$  (left) and its conjugate  $\phi^*(y)$  (right), c = 1



(note that conjugate is differentiable)



gives flow as function of potential difference across link

# A specific example

network with 5 nodes, 7 links, capacities  $c_j = 1$ 



# **Optimal flow**

optimal flows shown as width of arrows; optimal dual variables shown in nodes; potential differences shown on links



#### **Convergence of dual function**

fixed step size rules,  $\alpha=0.3,\ 1,\ 3$ 



for  $\alpha = 1$ , converges to  $p^{\star} = 2.48$  in around 40 iterations

# **Convergence of primal residual**



#### **Convergence of dual variables**

 $u^{(k)}$  versus iteration number k, fixed step size rule  $\alpha = 1$ 



( $\nu_5$  is fixed as zero)