
Decomposition Applications

• rate control

• single commodity network flow

EE364b, Stanford University



Rate control setup

• n flows, with fixed routes, in a network with m links

• variable fj ≥ 0 denotes the rate of flow j

• flow utility is Uj : R → R, strictly concave, increasing

• traffic ti on link i is sum of flows passing through it

• t = Rf , where R is the routing matrix

Rij =

{

1 flow j passes over link i
0 otherwise

• link capacity constraint: t � c

EE364b, Stanford University 1



Rate control problem

maximize U(f) =
∑n

j=1Uj(fj)

subject to Rf � c

• convex problem

• dual decomposition gives decentralized method

EE364b, Stanford University 2



Rate control Lagrangian

Lagrangian (for minimizing −U) is

L(f, λ) = −U(f) + λT (Rf − c)

= −λT c+

n
∑

j=1

(

−Uj(fj) + (rTj λ)fj
)

• λi is price (per unit flow) for using link i

• rTj λ is the sum of prices along route j

EE364b, Stanford University 3



Rate control dual

dual function is

g(λ) = −λT c+

n
∑

j=1

inf
fj

(−Uj(fj) + (rTj λ)fj)

= −λT c−
n
∑

j=1

(−Uj)
∗(−rTj λ),

dual rate control problem:

maximize −λT c−
∑n

j=1(−Uj)
∗(−rTj λ)

subject to λ � 0

EE364b, Stanford University 4



subgradient of negative dual:

Rf̄ − c ∈ ∂(−g)(λ)

where f̄j = argmax
(

Uj(fj)− (rTj λ)fj
)

EE364b, Stanford University 5



Dual decomposition rate control algorithm

given initial link price vector λ � 0 (e.g., λ = 1).

repeat

1. Sum link prices along each route.
Calculate Λj = rTj λ.

2. Optimize flows (separately) using flow prices.
fj := argmax (Uj(fj)− Λjfj).

3. Calculate link capacity margins.
s := c−Rf .

4. Update link prices.
λ := (λ− αks)+.

EE364b, Stanford University 6



Dual decomposition rate control algorithm

• decentralized:

– links only need to know the flows that pass through them
– flows only need to know prices on links they pass through

• prices converge to optimal; so do flows (since U is strictly concave)

• iterates can be (and often are) infeasible, i.e., Rf 6� c
(but we do have Rf � c in the limit)

• have upper bound −g(λ) on optimal utility U⋆

EE364b, Stanford University 7



Generating feasible flows

• define ηi = ti/ci = (Rf)i/ci

– ηi < 1 means link i is under capacity
– ηi > 1 means link i is over capacity

• define f feas as

f feas
j =

fj
max{ηi | flow j passes over link i}

• f feas will be feasible, even if f is not

• finding f feas is also decentralized
(in fact this is a step in primal decomposition)

EE364b, Stanford University 8



Example

• n = 10 flows, m = 12 links; 3 or 4 links per flow

• link capacities chosen randomly, uniform on [0.1, 1]

• Uj(fj) = log fj (can be argued to give proportionally fair flows)

• optimal flow as a function of price:

f̄j = argmax(Uj(fj)− Λjfj) = 1/Λj

• initial prices: λ = 1

• constant stepsize αk = 3

EE364b, Stanford University 9



Convergence of primal and dual objectives

0 20 40 60 80 100
−22

−21

−20

−19

−18

−17

−16

 

 

k

U(f feas)
−g(λ)

EE364b, Stanford University 10



Maximum capacity violation

0 20 40 60 80 100
10

−2

10
−1

10
0

m
a
x
i(
R
f
−

c)
i

k

EE364b, Stanford University 11



Single commodity network flow setup

• connected, directed graph with n links, p nodes

• variable xj denotes flow (traffic) on arc j

• given external source (or sink) flow si at node i, 1Ts = 0

• node incidence matrix A ∈ Rp×n is

Aij =







1 arc j enters i
−1 arc j leaves node i
0 otherwise

• flow conservation: Ax+ s = 0

• φ(x) =
∑n

j=1 φj(xj) is separable convex flow cost function

EE364b, Stanford University 12



Network flow problem

optimal single commodity network flow problem:

minimize
∑n

j=1 φj(xj)

subject to Ax+ s = 0

• convex, readily solved with standard methods

• dual decomposition yields decentralized solution method

EE364b, Stanford University 13



Network flow Lagrangian

Lagrangian is

L(x, ν) = φ(x) + νT (Ax+ s)

= νTs+

n
∑

j=1

(

φj(xj) + (aTj ν)xj

)

• aj is jth column of A

• we’ll interpret νi as potential at node i

• we use ∆νj to denote aTj ν, which is potential difference across edge j

EE364b, Stanford University 14



Network flow dual

dual function:

g(ν) = inf
x

L(x, ν)

= νTs+

n
∑

j=1

inf
xj

(φj(xj) + (∆νj)xj)

= νTs−
n
∑

j=1

φ∗

j(−∆νj)

dual problem: maximize g(ν)

EE364b, Stanford University 15



Recovering primal from dual

• strictly convex φj means unique minimizer x∗

j(y) of φj(xj)− yxj

• if φj is differentiable, x∗

j(y) = (φ′

j)
−1(y) (inverse of derivative function)

• optimal flows, from optimal potentials: x⋆
j = x∗

j(−∆ν⋆j )

• subgradient of negative dual function:

−(Ax∗(∆ν) + s) ∈ ∂(−g)(ν)

(negative of flow conservation residual)

EE364b, Stanford University 16



Dual decomposition network flow algorithm

given initial potential vector ν.

repeat

1. Determine link flows from potential differences.
xj := x∗

j(−∆νj), j = 1, . . . , n.
2. Compute flow surplus at each node.

Si := aTi x+ si, i = 1, . . . , p.
3. Update node potentials.

νi := νi + αkSi, i = 1, . . . , p.

αk is an appropriate step size

EE364b, Stanford University 17



Dual decomposition network flow algorithm

• decentralized:

– flow calculated from potential difference across edge
– node potential updated from its own flow surplus

• g(ν) gives lower bound on p⋆

• flow conservation Ax+ s = 0 only holds in limit

EE364b, Stanford University 18



Electrical network analogy

• electrical network with node incidence matrix A, nonlinear resistors in
branches

• variable xj is the current flow in branch j

• source si is external current injected at node i (must sum to zero)

• flow conservation equation Ax+ s = 0 is Kirkhoff Current Law (KCL)

• dual variables are node potentials; ∆νj is jth branch voltage

• branch current-voltage characteristic is xj = x∗

j(−∆νj)

then, current and potentials in circuit are optimal flows and dual variables

EE364b, Stanford University 19



Example: Minimum queueing delay

flow cost function

φj(xj) =
xj

cj − xj

, domφj = [0, cj)

where cj > 0 are given link capacities

(φj(xj) gives expected waiting time in queue with exponential arrivals at
rate xj, exponential service at rate cj)

conjugate is

φ∗

j(y) =

{

(
√
cjy − 1)2 y > 1/cj

0 y ≤ 1/cj

EE364b, Stanford University 20



cost function φ(x) (left) and its conjugate φ∗(y) (right), c = 1

0 0.5 1
0

2

4

6

8

x

φ
(x
)

−2 0 2 4 6

0

0.5

1

1.5

2

y
φ
∗
(y
)

(note that conjugate is differentiable)

EE364b, Stanford University 21



x∗

j(−∆νj), for cj = 1

−5 0 5 10
−0.5

0

0.5

1

∆νj

x
∗ j

gives flow as function of potential difference across link

EE364b, Stanford University 22



A specific example

network with 5 nodes, 7 links, capacities cj = 1

1

2

3

4

51

2

3

4

5

6

7

EE364b, Stanford University 23



Optimal flow

optimal flows shown as width of arrows; optimal dual variables shown in
nodes; potential differences shown on links

4.74

4.90

3.18

2.45

0−0.16

1.56

1.72

2.45

0.72

3.18

2.45

EE364b, Stanford University 24



Convergence of dual function

fixed step size rules, α = 0.3, 1, 3

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

 

 

k

g
(ν

(k
) )

α = 0.3
α = 1
α = 3

for α = 1, converges to p⋆ = 2.48 in around 40 iterations

EE364b, Stanford University 25



Convergence of primal residual

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

k

‖A
x
(k

)
+

s‖
2

α = 0.3
α = 1
α = 3

EE364b, Stanford University 26



Convergence of dual variables

ν(k) versus iteration number k, fixed step size rule α = 1

0 20 40 60 80 100
0

1

2

3

4

5

 

 

k

ν
(k

)

ν1
ν2
ν3
ν4

(ν5 is fixed as zero)

EE364b, Stanford University 27


