Convex-Concave Games

Prof. S. Boyd, EE392o, Stanford University

Example: Optimal Server Location on Network

payoff matrix is

$$
P=\left[\begin{array}{lllllllllll}
0 & 1 & 1 & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 2 \tag{1}\\
1 & 0 & 1 & 2 & 3 & 2 & 3 & 2 & 1 & 2 & 2 \\
1 & 1 & 0 & 1 & 2 & 2 & 3 & 3 & 2 & 2 & 1 \\
1 & 2 & 1 & 0 & 1 & 2 & 3 & 2 & 3 & 3 & 2 \\
2 & 3 & 2 & 1 & 0 & 3 & 4 & 1 & 2 & 3 & 3 \\
1 & 2 & 2 & 2 & 3 & 0 & 1 & 4 & 3 & 4 & 3 \\
2 & 3 & 3 & 3 & 4 & 1 & 0 & 5 & 4 & 5 & 4 \\
3 & 2 & 3 & 2 & 1 & 4 & 5 & 0 & 1 & 2 & 3 \\
2 & 1 & 2 & 3 & 2 & 3 & 4 & 1 & 0 & 1 & 2 \\
3 & 2 & 2 & 3 & 3 & 4 & 5 & 2 & 1 & 0 & 1 \\
2 & 2 & 1 & 2 & 3 & 3 & 4 & 3 & 2 & 1 & 0
\end{array}\right]
$$

$(P(i, j)$ is distance between nodes i and $j)$

- request deterministic, but unknown: place server at center of graph (nodes 1, 2, 3 or 4); then delay no greater than 3
- request has (known) distribution v_{0} : solve LP

$$
\begin{array}{ll}
\operatorname{minimize} & \left(P v_{0}\right)^{T} u \\
\text { subject to } & \mathbf{1}^{T} u=1 \tag{2}
\end{array}
$$

for example, if v_{0} is uniform: place server at node 1 or 3 (or any combination); expected delay is 1.636

- request has unknown probability distribution: server's optimal distribution found as solution to matrix game

- pair $\left(u_{i}^{\star}, v_{i}^{\star}\right)$ next to node i specifies probability of server and request originating at node i, where u^{\star}, v^{\star} solve the game
- solution need not be unique: another optimal server distribution is

$$
\begin{equation*}
\tilde{u}^{\star}=(0.486,0.077,0,0,0,0.104,0.035,0.298,0,0,0) . \tag{3}
\end{equation*}
$$

Note: Not every solution to

$$
\begin{align*}
& \text { minimize } \quad\left(P v^{\star}\right)^{T} u \\
& \text { subject to } \quad \mathbf{1}^{T} u=1 \tag{4}
\end{align*}
$$

solves the game: (bilinear) objective function is not strictly convex-concave in u and v.

An example of a convex-concave game

- m Gaussian communications channels, signal powers $p_{i} \geq 0$, noise (or interference) power $n_{i} \geq 0$
- power budget: total signal power P, total noise power N
- objective for signal powers is to maximize total capacity, for noise powers to minimize total capacity:

$$
\begin{array}{lll}
\text { maximize }_{p} & \text { minimize }_{n} & \sum_{i=1}^{m} \log \left(1+\frac{\beta_{i} p_{i}}{\sigma_{i}+n_{i}}\right) \\
\text { subject to } & \mathbf{1}^{T} p=P, \tag{5}\\
& \mathbf{1}^{T} n=N, \\
& p \succeq 0, n \succeq 0 .
\end{array}
$$

objective is convex in n and concave in p

Specific example

specific instance with 10 channels, solved using barrier method

- $P=20, N=10$
- $\sigma=(2,6,5,8,3,9,5,6,7,3)$
- $\beta_{i}=1, i=1, \ldots, m$
optimal allocation of signal powers is

$$
p^{\star}=(2.734,2.333,2.733,0.334,2.733,0.000,2.733,2.333,1.333,2.733)
$$

worst possible noise distribution is

$$
n^{\star}=(3.6,0,0.6,0,2.6,0,0.6,0,0,2.6)
$$

value of the game, $C^{\star}=2.860$
figure shows that p^{\star} is waterfilling solution to effective noise distribution $\left(\sigma+n^{\star}\right) / \beta$:

