Convex-Concave Games

Prof. S. Boyd, EE392o, Stanford University

Example: Optimal Server Location on Network

network with $11 \ \mathrm{nodes}$

payoff matrix is

$$P = \begin{bmatrix} 0 & 1 & 1 & 1 & 2 & 1 & 2 & 3 & 2 & 3 & 2 \\ 1 & 0 & 1 & 2 & 3 & 2 & 3 & 2 & 1 & 2 & 2 \\ 1 & 1 & 0 & 1 & 2 & 2 & 3 & 3 & 2 & 2 & 1 \\ 1 & 2 & 1 & 0 & 1 & 2 & 3 & 2 & 3 & 3 & 2 \\ 2 & 3 & 2 & 1 & 0 & 3 & 4 & 1 & 2 & 3 & 3 \\ 1 & 2 & 2 & 2 & 3 & 0 & 1 & 4 & 3 & 4 & 3 \\ 2 & 3 & 3 & 3 & 4 & 1 & 0 & 5 & 4 & 5 & 4 \\ 3 & 2 & 3 & 2 & 1 & 4 & 5 & 0 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 & 2 & 3 & 4 & 1 & 0 & 1 & 2 \\ 3 & 2 & 2 & 3 & 3 & 4 & 5 & 2 & 1 & 0 & 1 \\ 2 & 2 & 1 & 2 & 3 & 3 & 4 & 3 & 2 & 1 & 0 \end{bmatrix}$$

(P(i, j) is distance between nodes i and j)

•

- request deterministic, but unknown: place server at center of graph (nodes 1, 2, 3 or 4); then delay no greater than 3
- request has (known) distribution v_0 : solve LP

minimize
$$(Pv_0)^T u$$

subject to $\mathbf{1}^T u = 1.$ (2)

for example, if v_0 is uniform: place server at node 1 or 3 (or any combination); expected delay is 1.636

 request has unknown probability distribution: server's optimal distribution found as solution to matrix game

Prof. S. Boyd, EE392o, Stanford University

• pair $(u_i^{\star}, v_i^{\star})$ next to node *i* specifies probability of server and request originating at node *i*, where u^{\star} , v^{\star} solve the game

• solution need not be unique: another optimal server distribution is

$$\tilde{u}^{\star} = (0.486, 0.077, 0, 0, 0, 0.104, 0.035, 0.298, 0, 0, 0).$$
 (3)

Note: Not every solution to

minimize
$$(Pv^{\star})^T u$$

subject to $\mathbf{1}^T u = 1$ (4)

solves the game: (bilinear) objective function is not strictly convex-concave in u and v.

An example of a convex-concave game

- *m* Gaussian communications channels, signal powers $p_i \ge 0$, noise (or interference) power $n_i \ge 0$
- power budget: total signal power P, total noise power N
- objective for signal powers is to maximize total capacity, for noise powers to minimize total capacity:

maximize_p minimize_n
$$\sum_{i=1}^{m} \log(1 + \frac{\beta_i p_i}{\sigma_i + n_i})$$

subject to
$$\mathbf{1}^T p = P,$$

$$\mathbf{1}^T n = N,$$

$$p \succeq 0, n \succeq 0.$$
 (5)

objective is convex in n and concave in p

Specific example

specific instance with $10\ {\rm channels},\ {\rm solved}\ {\rm using}\ {\rm barrier}\ {\rm method}$

- P = 20, N = 10
- $\sigma = (2, 6, 5, 8, 3, 9, 5, 6, 7, 3)$
- $\beta_i = 1, i = 1, ..., m$

optimal allocation of signal powers is

$$p^{\star} = (2.734, 2.333, 2.733, 0.334, 2.733, 0.000, 2.733, 2.333, 1.333, 2.733),$$

worst possible noise distribution is

$$n^{\star} = (3.6, 0, 0.6, 0, 2.6, 0, 0.6, 0, 0, 2.6).$$

Prof. S. Boyd, EE392o, Stanford University

value of the game, $C^{\star} = 2.860$

figure shows that p^{\star} is waterfilling solution to effective noise distribution $(\sigma+n^{\star})/\beta$:

