Conjugate Gradient Method

- direct and indirect methods
- positive definite linear systems
- Krylov sequence
- derivation of the Conjugate Gradient Method
- spectral analysis of Krylov sequence
- preconditioning

Three classes of methods for linear equations

methods to solve linear system $A x=b, A \in \mathbf{R}^{n \times n}$

- dense direct (factor-solve methods)
- runtime depends only on size; independent of data, structure, or sparsity
- work well for n up to a few thousand
- sparse direct (factor-solve methods)
- runtime depends on size, sparsity pattern; (almost) independent of data
- can work well for n up to 10^{4} or 10^{5} (or more)
- requires good heuristic for ordering
- indirect (iterative methods)
- runtime depends on data, size, sparsity, required accuracy
- requires tuning, preconditioning, . . .
- good choice in many cases; only choice for $n=10^{6}$ or larger

Symmetric positive definite linear systems

SPD system of equations

$$
A x=b, \quad A \in \mathbf{R}^{n \times n}, \quad A=A^{T} \succ 0
$$

examples

- Newton/interior-point search direction: $\nabla^{2} \phi(x) \Delta x=-\nabla \phi(x)$
- least-squares normal equations: $\left(A^{T} A\right) x=A^{T} b$
- regularized least-squares: $\left(A^{T} A+\mu I\right) x=A^{T} b$
- minimization of convex quadratic function $(1 / 2) x^{T} A x-b^{T} x$
- solving (discretized) elliptic PDE (e.g., Poisson equation)
- analysis of resistor circuit: $G v=i$
- v is node voltage (vector), i is (given) source current
- G is circuit conductance matrix

$$
G_{i j}= \begin{cases}\text { total conductance incident on node } i & i=j \\ -(\text { conductance between nodes } i \text { and } j) & i \neq j\end{cases}
$$

CG overview

- proposed by Hestenes and Stiefel in 1952 (as direct method)
- solves SPD system $A x=b$
- in theory (i.e., exact arithmetic) in n iterations
- each iteration requires a few inner products in \mathbf{R}^{n}, and one matrix-vector multiply $z \rightarrow A z$
- for A dense, matrix-vector multiply $z \rightarrow A z$ costs n^{2}, so total cost is n^{3}, same as direct methods
- get advantage over dense if matrix-vector multiply is cheaper than n^{2}
- with roundoff error, CG can work poorly (or not at all)
- but for some A (and b), can get good approximate solution in $\ll n$ iterations

Solution and error

- $x^{\star}=A^{-1} b$ is solution
- x^{\star} minimizes (convex function) $f(x)=(1 / 2) x^{T} A x-b^{T} x$
- $\nabla f(x)=A x-b$ is gradient of f
- with $f^{\star}=f\left(x^{\star}\right)$, we have

$$
\begin{aligned}
f(x)-f^{\star} & =(1 / 2) x^{T} A x-b^{T} x-(1 / 2) x^{\star T} A x^{\star}+b^{T} x^{\star} \\
& =(1 / 2)\left(x-x^{\star}\right)^{T} A\left(x-x^{\star}\right) \\
& =(1 / 2)\left\|x-x^{\star}\right\|_{A}^{2}
\end{aligned}
$$

i.e., $f(x)-f^{\star}$ is half of squared A-norm of error $x-x^{\star}$

- a relative measure (comparing x to 0):

$$
\tau=\frac{f(x)-f^{\star}}{f(0)-f^{\star}}=\frac{\left\|x-x^{\star}\right\|_{A}^{2}}{\left\|x^{\star}\right\|_{A}^{2}}
$$

(fraction of maximum possible reduction in f, compared to $x=0$)

Residual

- $r=b-A x$ is called the residual at x
- $r=-\nabla f(x)=A\left(x^{\star}-x\right)$
- in terms of r, we have

$$
\begin{aligned}
f(x)-f^{\star} & =(1 / 2)\left(x-x^{\star}\right)^{T} A\left(x-x^{\star}\right) \\
& =(1 / 2) r^{T} A^{-1} r \\
& =(1 / 2)\|r\|_{A^{-1}}^{2}
\end{aligned}
$$

- a commonly used measure of relative accuracy: $\eta=\|r\| /\|b\|$
- $\tau \leq \kappa(A) \eta^{2}$ (η is easily computable from x; τ is not)

Krylov subspace

(a.k.a. controllability subspace)

$$
\begin{aligned}
\mathcal{K}_{k} & =\operatorname{span}\left\{b, A b, \ldots, A^{k-1} b\right\} \\
& =\{p(A) b \mid p \text { polynomial, } \operatorname{deg} p<k\}
\end{aligned}
$$

we define the Krylov sequence $x^{(1)}, x^{(2)}, \ldots$ as

$$
x^{(k)}=\underset{x \in \mathcal{K}_{k}}{\operatorname{argmin}} f(x)=\underset{x \in \mathcal{K}_{k}}{\operatorname{argmin}}\left\|x-x^{\star}\right\|_{A}^{2}
$$

the CG algorithm (among others) generates the Krylov sequence

Properties of Krylov sequence

- $f\left(x^{(k+1)}\right) \leq f\left(x^{(k)}\right)$ (but $\|r\|$ can increase)
- $x^{(n)}=x^{\star}\left(\right.$ i.e., $x^{\star} \in \mathcal{K}_{n}$ even when $\left.\mathcal{K}_{n} \neq \mathbf{R}^{n}\right)$
- $x^{(k)}=p_{k}(A) b$, where p_{k} is a polynomial with $\operatorname{deg} p_{k}<k$
- less obvious: there is a two-term recurrence

$$
x^{(k+1)}=x^{(k)}+\alpha_{k} r^{(k)}+\beta_{k}\left(x^{(k)}-x^{(k-1)}\right)
$$

for some α_{k}, β_{k} (basis of CG algorithm)

Cayley-Hamilton theorem

characteristic polynomial of A :

$$
\chi(s)=\operatorname{det}(s I-A)=s^{n}+\alpha_{1} s^{n-1}+\cdots+\alpha_{n}
$$

by Caley-Hamilton theorem

$$
\chi(A)=A^{n}+\alpha_{1} A^{n-1}+\cdots+\alpha_{n} I=0
$$

and so

$$
A^{-1}=-\left(1 / \alpha_{n}\right) A^{n-1}-\left(\alpha_{1} / \alpha_{n}\right) A^{n-2}-\cdots-\left(\alpha_{n-1} / \alpha_{n}\right) I
$$

in particular, we see that $x^{\star}=A^{-1} b \in \mathcal{K}_{n}$

Deriving the Conjugate Gradient Method

- suppose $\left\{d_{0}, \ldots, d_{k-1}\right\}$ is an orthogonal basis for \mathcal{K}_{k} under the A-inner product, i.e., $\left(d_{i}\right)^{T} A d_{j}=0 \forall i \neq j$
- let $x^{(k)}=\sum_{i=0}^{k-1} \alpha_{i} d_{i}$

$$
\begin{aligned}
f\left(x^{(k)}\right) & =\frac{1}{2}\left(x^{(k)}\right)^{T} A x^{(k)}-b^{T} x^{(k)} \\
& =\frac{1}{2}\left(\sum_{i=0}^{k-1} \alpha_{i} d_{i}\right) A\left(\sum_{i=0}^{k-1} \alpha_{i} d_{i}\right)-b^{T}\left(\sum_{i=0}^{k-1} \alpha_{i} d_{i}\right) \\
& =\frac{1}{2} \sum_{i=0}^{k-1} \alpha_{i}^{2}\left(d_{i}\right)^{T} A d_{i}-\alpha_{i} b^{T} d_{i}
\end{aligned}
$$

- decomposable problem, optimal $\alpha_{i}^{*}=b^{T} d_{i} /\left\|d_{i}\right\|_{A}^{2} \forall i$

Constructing the basis (slow)

- suppose $\left\{d_{0}, \ldots, d_{k-1}\right\}$ is an orthogonal basis for \mathcal{K}_{k}
- extend $\left\{d_{0}, \ldots, d_{k-1}\right\}$ to a basis of \mathcal{K}_{k+1} using Gram-Schmidt procedure

$$
d^{k}=g-\sum_{j=0}^{k-1} d_{j} \frac{\left(d_{j}\right)^{T} A g}{\left(d_{j}\right)^{T} A d_{j}}
$$

- where we can pick any $g \in \mathcal{K}_{k+1}$ such that $g \notin \mathcal{K}_{k}$, e.g., $g=A^{k} b$
- after constructing the basis, set $x^{(k)}=\sum_{j=0}^{k-1} \alpha_{j}^{*} d_{j}=\sum_{j=0}^{k} \frac{b^{T} d_{j}}{\left(d_{j}\right)^{T} A d_{j}} d_{j}$
- Conjugate Gradient method constructs the basis online by picking $g:=-\nabla f\left(x^{(k)}\right)=b-A x^{(k)}$

Simplifying Gram-Schmidt procedure

- initialize at $x^{(0)}=0$

$$
\begin{aligned}
& d_{0}=-\nabla f\left(x^{(k)}\right)=b-A x^{(0)}=b \\
& d_{1}=\left(b-A x^{(1)}\right)-d_{0} \frac{\left(d^{0}\right)^{T} A\left(b-A x^{(1)}\right)}{\left(d_{0}\right)^{T} A d_{0}} \\
& d_{2}=\left(b-A x^{(2)}\right)-d_{1} \frac{\left(d_{1}\right)^{T} A\left(b-A x^{(2)}\right)}{\left(d_{1}\right)^{T} A d_{1}}-d_{0} \frac{\left(d_{0}\right)^{T} A(b-A x(2))}{\left(d_{0}\right)^{T} A d_{0}} \\
& d_{3}=\left(b-A x^{(3)}\right)-d_{2} \frac{\left(d_{2}\right)^{T} A\left(b-A x^{(3)}\right)}{\left(d_{2}\right)^{T} A d_{3}}-d_{1} \frac{\left(d_{1}\right)^{T} A\left(b-A x{ }^{(3)}\right)}{\left(d_{1}\right)^{T} A d_{1}}-d_{0} \frac{\left(d_{0}\right)^{T} A\left(b-A x^{(3)}\right)}{\left(d_{0}\right)^{T} A d_{0}}
\end{aligned}
$$

- turns out red terms are zero due to orthogonality
- $\operatorname{since} x^{(k)}=\sum_{j=0}^{k} \alpha_{j}^{*} d_{j}$ we have $x^{(k+1)}=x^{(k)}+\alpha_{k}^{*} d_{k}$
- we pick $d_{0}=-\nabla f\left(x^{(0)}\right)$ and for $k=1, \ldots, n-1$

$$
d_{k}=-\nabla f\left(x^{(k)}\right)-\sum_{j=0}^{k-1} d_{j} \frac{d_{j}^{T} A\left(-\nabla f\left(x^{(k)}\right)\right)}{d_{j}^{T} A d_{j}}
$$

- it holds that $d_{j}^{T} \nabla f\left(x^{(k)}\right)=0$ and $\nabla f\left(x^{(j)}\right)^{T} \nabla f\left(x^{(k)}\right)=0 \forall j<k$
proof: we have $d_{0}^{T} \nabla f\left(x^{(1)}\right)=d_{0}^{T}(\underbrace{A x_{0}}_{0}-b)+\alpha_{0}^{*} d_{0}^{T} A d_{0}=0$ and
$d_{j}^{T} \nabla f\left(x^{(k+1)}\right)=d_{j}^{T}\left(A x^{(k)}+\alpha_{k} d_{k}-b\right)=d_{j}^{T} \nabla f\left(x^{(k)}\right)-\alpha_{k}^{*} \underbrace{d_{j}^{T} A d_{k}}_{0 \text { for } j \neq k}$
in addition $\boldsymbol{\operatorname { s p a n }}\left(d_{0}, \ldots, d_{k}\right)=\boldsymbol{\operatorname { s p a n }}\left(\nabla f\left(x^{(0)}, \ldots, \nabla f\left(x^{(k)}\right)\right)\right.$

Simplifying CG update

- finally, note that

$$
\nabla f\left(x^{(j+1)}\right)-\nabla f\left(x^{(j)}\right)=A\left(x^{(j)}+\alpha_{j}^{*} d_{j}\right)-b-\left(A x^{(j)}-b\right)=\alpha_{j}^{*} A d_{j}
$$

- simplify the basis update

$$
\begin{aligned}
d_{k} & =-\nabla f\left(x^{(k)}\right)-\sum_{j=0}^{k-1} d_{j} \frac{d_{j}^{T} A\left(-\nabla f\left(x^{(k)}\right)\right)}{d_{j}^{T} A d_{j}} \\
& =-\nabla f\left(x^{(k)}\right)-\sum_{j=0}^{k-1} d_{j} \frac{\left(\nabla f\left(x^{(j+1)}\right)-\nabla f\left(x^{(j)}\right)\right)^{T}\left(-\nabla f\left(x^{(k)}\right)\right)}{\left(\nabla f\left(x^{(j+1)}\right)-\nabla f\left(x^{(j)}\right)\right)^{T} d_{j}} \\
& =-\nabla f\left(x^{(k)}\right)-d_{k-1} \frac{\nabla f\left(x^{(k)}\right)^{T}\left(-\nabla f\left(x^{(k)}\right)\right)}{\left(-\nabla f\left(x^{(k-1)}\right)\right)^{T} d_{k-1}}
\end{aligned}
$$

Final CG update rule

- CG algorithm simplifies to

$$
d_{k}=-\nabla f\left(x^{(k)}\right)+d_{k-1} \frac{\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2}}{\left\|\nabla f\left(x^{(k-1)}\right)\right\|_{2}^{2}}
$$

- $x^{(k+1)}=x^{(k)}+\alpha_{k}^{*} d_{k}$ where $\alpha^{*}=\arg \min _{\alpha} f\left(x_{k}+\alpha d_{k}\right)=\frac{b^{T} d_{k}}{d_{k}^{T} A d_{k}}$ since we have $f\left(x^{(k-1)}\right)^{T} d_{k-1}=-\left\|\nabla f\left(x^{(k-1)}\right)\right\|_{2}^{2}$. Proof:

$$
\begin{aligned}
\nabla f\left(x^{(k)}\right)^{T} d_{k} & =\nabla f\left(x^{(k)}\right)^{T}\left(-\nabla f\left(x^{(k)}\right)-d_{k-1} \frac{\nabla f\left(x^{(k)}\right)^{T}\left(-\nabla f\left(x^{(k)}\right)\right)}{\left(-\nabla f\left(x^{(k-1)}\right)\right)^{T} d_{k-1}}\right) \\
& =-\nabla f\left(x^{(k)}\right)^{T} \nabla f\left(x^{(k)}\right)
\end{aligned}
$$

Spectral analysis of Krylov sequence

- $A=Q \Lambda Q^{T}, Q$ orthogonal, $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$
- define $y=Q^{T} x, \bar{b}=Q^{T} b, y^{\star}=Q^{T} x^{\star}$
- in terms of y, we have

$$
\begin{aligned}
f(x)=\bar{f}(y) & =(1 / 2) x^{T} Q \Lambda Q^{T} x-b^{T} Q Q^{T} x \\
& =(1 / 2) y^{T} \Lambda y-\bar{b}^{T} y \\
& =\sum_{i=1}^{n}\left((1 / 2) \lambda_{i} y_{i}^{2}-\bar{b}_{i} y_{i}\right)
\end{aligned}
$$

so $y_{i}^{\star}=\bar{b}_{i} / \lambda_{i}, f^{\star}=-(1 / 2) \sum_{i=1}^{n} \bar{b}_{i}^{2} / \lambda_{i}$

Krylov sequence in terms of y

$$
\begin{gathered}
y^{(k)}=\underset{y \in \overline{\mathcal{K}}_{k}}{\operatorname{argmin}} \bar{f}(y), \quad \overline{\mathcal{K}}_{k}=\operatorname{span}\left\{\bar{b}, \Lambda \bar{b}, \ldots, \Lambda^{k-1} \bar{b}\right\} \\
y_{i}^{(k)}=p_{k}\left(\lambda_{i}\right) \bar{b}_{i}, \quad \operatorname{deg} p_{k}<k \\
p_{k}=\underset{\operatorname{deg} p<k}{\operatorname{argmin}} \sum_{i=1}^{n} \bar{b}_{i}^{2}\left((1 / 2) \lambda_{i} p\left(\lambda_{i}\right)^{2}-p\left(\lambda_{i}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
f\left(x^{(k)}\right)-f^{\star} & =\bar{f}\left(y^{(k)}\right)-f^{\star} \\
& =\min _{\operatorname{deg} p<k}(1 / 2) \sum_{i=1}^{n} \bar{b}_{i}^{2} \frac{\left(\lambda_{i} p\left(\lambda_{i}\right)-1\right)^{2}}{\lambda_{i}} \\
& =\min _{\operatorname{deg} p<k}(1 / 2) \sum_{i=1}^{n} \bar{y}_{i}^{\star 2} \lambda_{i}\left(\lambda_{i} p\left(\lambda_{i}\right)-1\right)^{2} \\
& =\min _{\operatorname{deg} q \leq k, q(0)=1}(1 / 2) \sum_{i=1}^{n} \bar{y}_{i}^{\star 2} \lambda_{i} q\left(\lambda_{i}\right)^{2} \\
& =\min _{\operatorname{deg} q \leq k, q(0)=1}(1 / 2) \sum_{i=1}^{n} \bar{b}_{i}^{2} \frac{q\left(\lambda_{i}\right)^{2}}{\lambda_{i}}
\end{aligned}
$$

$$
\begin{aligned}
\tau_{k} & =\frac{\min _{\operatorname{deg} q \leq k, q(0)=1} \sum_{i=1}^{n} \bar{y}_{i}^{\star 2} \lambda_{i} q\left(\lambda_{i}\right)^{2}}{\sum_{i=1}^{n} \bar{y}_{i}^{\star 2} \lambda_{i}} \\
& \leq \min _{\operatorname{deg} q \leq k, q(0)=1}\left(\max _{i=1, \ldots, n} q\left(\lambda_{i}\right)^{2}\right)
\end{aligned}
$$

- if there is a polynomial q of degree k, with $q(0)=1$, that is small on the spectrum of A, then $f\left(x^{(k)}\right)-f^{\star}$ is small
- if eigenvalues are clustered in k groups, then $y^{(k)}$ is a good approximate solution
- if solution x^{\star} is approximately a linear combination of k eigenvectors of A, then $y^{(k)}$ is a good approximate solution

A bound on convergence rate

- taking q as Chebyshev polynomial of degree k, that is small on interval [$\lambda_{\text {min }}, \lambda_{\text {max }}$], we get

$$
\tau_{k} \leq\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}, \quad \kappa=\lambda_{\max } / \lambda_{\min }
$$

- convergence can be much faster than this, if spectrum of A is spread but clustered

Small example

$A \in \mathbf{R}^{7 \times 7}$, spectrum shown as filled circles; $p_{1}, p_{2}, p_{3}, p_{4}$, and p_{7} shown

Convergence

Residual convergence

Larger example

- solve $G v=i$, resistor network with 10^{5} nodes
- average node degree 10 ; around 10^{6} nonzeros in G
- random topology with one grounded node
- nonzero branch conductances uniform on $[0,1]$
- external current i uniform on $[0,1]$
- sparse Cholesky factorization of G requires too much memory

Residual convergence

CG algorithm

(follows C. T. Kelley)

$$
\begin{aligned}
& x:=0, \quad r:=b, \quad \rho_{0}:=\|r\|^{2} \\
& \text { for } k=1, \ldots, N_{\max } \\
& \quad \text { quit if } \sqrt{\rho_{k-1}} \leq \epsilon\|b\| \\
& \quad \text { if } k=1 \text { then } p:=r ; \text { else } p:=r+\left(\rho_{k-1} / \rho_{k-2}\right) p \\
& \quad w:=A p \\
& \alpha:=\rho_{k-1} / p^{T} w \\
& \quad x:=x+\alpha p \\
& \quad r:=r-\alpha w \\
& \rho_{k}:=\|r\|^{2}
\end{aligned}
$$

Efficient matrix-vector multiply

- sparse A
- structured (e.g., sparse) plus low rank
- products of easy-to-multiply matrices
- fast transforms (FFT, wavelet, . . .)
- inverses of lower/upper triangular (by forward/backward substitution)
- fast Gauss transform, for $A_{i j}=\exp \left(-\left\|v_{i}-v_{j}\right\|^{2} / \sigma^{2}\right)$ (via multipole)

Shifting

- suppose we have guess \hat{x} of solution x^{\star}
- we can solve $A z=b-A \hat{x}$ using CG, then get $x^{\star}=\hat{x}+z$
- in this case $x^{(k)}=\hat{x}+z^{(k)}=\underset{x \in \hat{x}+\mathcal{K}_{k}}{\operatorname{argmin}} f(x)$ ($\hat{x}+\mathcal{K}_{k}$ is called shifted Krylov subspace)
- same as initializing CG alg with $x:=\hat{x}, r:=b-A x$
- good for 'warm start', i.e., solving $A x=b$ starting from a good initial guess (e.g., the solution of another system $\tilde{A} x=\tilde{b}$, with $A \approx \tilde{A}, b \approx \tilde{b}$)

Preconditioned conjugate gradient algorithm

- idea: apply CG after linear change of coordinates $x=T y, \operatorname{det} T \neq 0$
- use CG to solve $T^{T} A T y=T^{T} b$; then set $x^{\star}=T^{-1} y^{\star}$
- T or $M=T T^{T}$ is called preconditioner
- in naive implementation, each iteration requires multiplies by T and T^{T} (and A); also need to compute $x^{\star}=T^{-1} y^{\star}$ at end
- can re-arrange computation so each iteration requires one multiply by $M($ and $A)$, and no final solve $x^{\star}=T^{-1} y^{\star}$
- called preconditioned conjugate gradient (PCG) algorithm

Choice of preconditioner

- if spectrum of $T^{T} A T$ (which is the same as the spectrum of $M A$) is clustered, PCG converges fast
- extreme case: $M=A^{-1}$
- trade-off between enhanced convergence, and extra cost of multiplication by M at each step
- goal is to find M that is cheap to multiply, and approximate inverse of A (or at least has a more clustered spectrum than A)

Some generic preconditioners

- diagonal: $M=\operatorname{diag}\left(1 / A_{11}, \ldots, 1 / A_{n n}\right)$
- incomplete/approximate Cholesky factorization: use $M=\hat{A}^{-1}$, where $\hat{A}=\hat{L} \hat{L}^{T}$ is an approximation of A with cheap Cholesky factorization
- compute Cholesky factorization of $\hat{A}, \hat{A}=\hat{L} \hat{L}^{T}$
- at each iteration, compute $M z=\hat{L}^{-T} \hat{L}^{-1} z$ via forward/backward substitution
- examples
- \hat{A} is central k-wide band of A
- \hat{L} obtained by sparse Cholesky factorization of A, ignoring small elements in A, or refusing to create excessive fill-in

Randomized preconditioning

- suppose $A=H^{T} H$, for some $H \in \mathbf{R}^{m \times n}$ and $m \gg n$
example: Hessian of a convex objective, e.g., least squares problem $\operatorname{argmin}_{x} \frac{1}{2}\|H x-y\|_{2}^{2}=\operatorname{argmin}_{x} \frac{1}{2} x^{T} H^{T} H x-x^{T} y$
- QR decomposition $H=Q R$ and the preconditioner $T=R^{-1}$ is ideal since $T^{T} A T=(H T)^{T}(H T)=Q^{T} Q=I$, whose condition number is 1 however, QR decomposition on H costs $O\left(m n^{2}\right)$ operations
- randomized preconditioner: let $S \in \mathbf{R}^{s \times m}$ be a random matrix, e.g., i.i.d. ± 1, and apply QR decomposition as $S H=\tilde{Q} \tilde{R}$. Set $T=\tilde{R}^{-1}$ computational cost is $O\left(s n^{2}\right)+$ cost of forming the sketch $S H$
- S can be Randomized Hadamard Transform $(O(m n \log s))$

Preconditioned conjugate gradient

(with preconditioner $M \approx A^{-1}$ (hopefully))

$$
\begin{aligned}
& x:=0, \quad r:=b-A x_{0}, \quad p:=r \quad z:=M r, \quad \rho_{1}:=r^{T} z \\
& \text { for } k=1, \ldots, N_{\max } \\
& \quad \text { quit if } \sqrt{\rho_{k}} \leq \epsilon\|b\|_{2} \text { or }\|r\| \leq \epsilon\|b\|_{2} \\
& w:=A p \\
& \alpha:=\frac{\rho_{k}}{w^{T} p} \\
& x:=x+\alpha p \\
& r:=r-\alpha w \\
& z:=M r \\
& \rho_{k+1}:=z^{T} r \\
& p:=z+\frac{\rho_{k+1}}{\rho_{k}} p
\end{aligned}
$$

Larger example

residual convergence with and without diagonal preconditioning

The Fletcher-Reeves Method

CG can be adapted for arbitrary differentiable objectives: set $d_{0}=-\nabla f\left(x^{(0)}\right)$ and

$$
\begin{aligned}
d_{k} & =-\nabla f\left(x^{(k)}\right)+d_{k-1} \frac{\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2}}{\left\|\nabla f\left(x^{(k-1)}\right)\right\|_{2}^{2}} \\
x^{(k+1)} & =x^{(k)}+\alpha_{k}^{*} d_{k} \quad \text { where } \quad \alpha^{*}=\arg \min _{\alpha} f\left(x_{k}+\alpha d_{k}\right)
\end{aligned}
$$

- exact line searches are replaced by practical line search procedures
- termination criterion is typically $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2} \leq \epsilon$
- conjugacy of the search directions d_{k} is only achieved approximately hence, we may need to reset d_{k} to $-\nabla f\left(x^{(k)}\right)$ periodically

CG summary

- in theory (with exact arithmetic) converges to solution in n steps
- the bad news: due to numerical round-off errors, can take more than n steps (or fail to converge)
- the good news: with luck (i.e., good spectrum of A), can get good approximate solution in $\ll n$ steps
- each step requires $z \rightarrow A z$ multiplication
- can exploit a variety of structure in A
- in many cases, never form or store the matrix A
- compared to direct (factor-solve) methods, CG is less reliable, data dependent; often requires good (problem-dependent) preconditioner
- but, when it works, can solve extremely large systems

