Active Learning

- Linear classifiers
- Support Vector Machines
- Active learning
- Cutting planes

Prof. Mert Pilanci

updated: April 22, 2022

Linear Classifiers

- given training data $x_i \in \mathbf{R}^n$ and labels $y_i \in \{-1, +1\}^n$ for i = 1, ..., m
- find a linear classifier $f_{w,b}(x) = x^T w + b$ that predicts labels

Separating Hyperplanes

• Directly estimate hyperplanes $w^T x + b \ge 0$

parameters $\theta = (w, b)$

- hyperplane: $H = \left\{ x: w^T x + b = 0 \right\}$
- $\bullet\,$ distance between a point z and H

$$d(z,H) = \min_{h \in H} ||z - h||_2 = \frac{|w^T z + b|}{||w||_2}$$

Margin

• margin ρ of a hyperplane is defined as

$$\rho(w, b) = \min_{i=1,...,n} d(x_i, H)$$
$$= \min_{i=1,...,n} \frac{|w^T x_i + b|}{||w||_2}$$

• maximum margin separating hyperplane is the solution of

$$\max_{w,b} \rho(w,b)$$

s.t. $y_i(w^T x_i + b) \ge 0 \ \forall i$

Maximum margin hyperplane

• maximum margin separating hyperplane is the solution of

$$\max_{w,b} \min_{i=1,\dots,n} \frac{|w^T x_i + b|}{||w||_2}$$

s.t. $y_i(w^T x_i + b) \ge 0 \ \forall i$

• not unique

 $(\alpha w, \alpha b)$ corresponds to the same hyperplane as (w, b) for $\alpha > 0$

• Scale
$$w$$
 and b by $\frac{1}{\min_{i=1,\dots,n} |w^T x_i + b|}$ and let $\rho = \frac{1}{||w||_2}$

EE364b, Stanford University

Maximum margin hyperplane classifier

$$\max_{w,b} \frac{1}{||w||_2}$$

s.t. $y_i(w^T x_i + b) \ge 1 \ \forall i$

equivalently

$$\min_{w,b} ||w||_2$$

s.t. $y_i(w^T x_i + b) \ge 1 \ \forall i$

• hard-margin support vector machine (SVM)

EE364b, Stanford University

Active Learning

 machine learning algorithms which can actively query a user to label new data points

• also called **optimal experimental design** in statistics

• Given a labeled dataset x_i, y_i , i = 1, ..., m, query new points x_j and obtain their labels y_j from an expert, for j = 1, ..., r

Active Learning Strategies

- Balance exploration and exploitation: the choice of examples to label is seen as a dilemma between the exploration and the exploitation over the data space representation. Connected to Contextual Bandits and Thompson Sampling
- **Expected model change:** label those points that would most change the current model.
- **Expected error reduction:** label those points that would most reduce the model's generalization error.

Active Learning via Cutting Planes

• Consider the set of hyperplanes that classify the labeled training data

$$\mathcal{W} := \left\{ w \, : \, y_i w^T x_i \ge 1 \, \forall i \in [m] \right\}$$

• and have large margin

$$\mathcal{M} := \left\{ w : \|w\|_2 \le \beta \right\}$$

EE364b, Stanford University

Active Learning via Cutting Planes

• Apply cutting plane to the set

$$\mathcal{W} \cap \mathcal{M} = \left\{ w : y_i w^T x_i \ge 1 \, \forall i \in [m], \, \|w\|_2 \le \beta \right\}$$

Active Learning via Cutting Planes

• Apply cutting plane to the set

$$\mathcal{W} \cap \mathcal{M} = \left\{ w : y_i w^T x_i \ge 1 \, \forall i \in [m], \, \|w\|_2 \le \beta \right\}$$

• Query the label of $x = x_{center}$

where x_{center} is the analytical center, center of the minimum volume ellipsoid, center of gravity of $\mathcal{W} \cap \mathcal{M}$.

• Add (x, y) to the training data, update $\mathcal W$ and repeat

References

References

- [BV04] S. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- [LR15] Ugo Louche and Liva Ralaivola. From cutting planes algorithms to compression schemes and active learning. In 2015 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2015.
- [Wik] Wikipedia. Active learning. https://en.wikipedia.org/wiki/ Active_learning_(machine_learning).