Analytic Center Cutting-Plane Method

- analytic center cutting-plane method
- computing the analytic center
- pruning constraints
- lower bound and stopping criterion

Analytic center cutting-plane method

analytic center of polyhedron $\mathcal{P}=\left\{z \mid a_{i}^{T} z \preceq b_{i}, i=1, \ldots, m\right\}$ is

$$
\mathrm{AC}(\mathcal{P})=\underset{z}{\operatorname{argmin}}-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} z\right)
$$

ACCPM is localization method with next query point $x^{(k+1)}=\mathrm{AC}\left(\mathcal{P}_{k}\right)$ (found by Newton's method)

ACCPM algorithm

given an initial polyhedron \mathcal{P}_{0} known to contain X.
$k:=0$.

repeat

Compute $x^{(k+1)}=\mathrm{AC}\left(\mathcal{P}_{k}\right)$.
Query cutting-plane oracle at $x^{(k+1)}$.
If $x^{(k+1)} \in X$, quit.
Else, add returned cutting-plane inequality to \mathcal{P}.
$\mathcal{P}_{k+1}:=\mathcal{P}_{k} \cap\left\{z \mid a^{T} z \leq b\right\}$
If $\mathcal{P}_{k+1}=\emptyset$, quit.
$k:=k+1$.

Constructing cutting-planes

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

$f_{0}, \ldots, f_{m}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ convex; X is set of optimal points; p^{\star} is optimal value

- if x is not feasible, say $f_{j}(x)>0$, we have (deep) feasibility cut

$$
f_{j}(x)+g_{j}^{T}(z-x) \leq 0, \quad g_{j} \in \partial f_{j}(x)
$$

- if x is feasible, we have (deep) objective cut

$$
g_{0}^{T}(z-x)+f_{0}(x)-f_{\text {best }}^{(k)} \leq 0, \quad g_{0} \in \partial f_{0}(x)
$$

Computing the analytic center

we must solve the problem

$$
\operatorname{minimize} \quad \Phi(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

where $\operatorname{dom} \Phi=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}$

- challenge: we are not given a point in $\operatorname{dom} \Phi$
- some options:
- use phase I method to find a point in $\operatorname{dom} \Phi$ (or determine that $\operatorname{dom} \Phi=\emptyset$); then use standard Newton method to compute AC
- use infeasible start Newton method starting from a point outside $\operatorname{dom} \Phi$

Infeasible start Newton method

$$
\begin{array}{ll}
\operatorname{minimize} & -\sum_{i=1}^{m} \log y_{i} \\
\text { subject to } & y=b-A x
\end{array}
$$

with variables x and y

- can be started from any x and any $y \succ 0$
- e.g.: take initial x as previous point $x_{\text {prev }}$, and choose y as

$$
y_{i}= \begin{cases}b_{i}-a_{i}^{T} x & b_{i}-a_{i}^{T} x>0 \\ 1 & \text { otherwise }\end{cases}
$$

- define primal and dual residuals as

$$
r_{p}=y+A x-b, \quad r_{d}=\left[\begin{array}{c}
A^{T} \nu \\
g+\nu
\end{array}\right]
$$

where $g=-\operatorname{diag}\left(1 / y_{i}\right) \mathbf{1}$ is gradient of objective and $r=\left(r_{d}, r_{p}\right)$

- Newton step at (x, y, ν) is defined by

$$
\left[\begin{array}{ccc}
0 & 0 & A^{T} \\
0 & H & I \\
A & I & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta \nu
\end{array}\right]=-\left[\begin{array}{c}
r_{d} \\
r_{p}
\end{array}\right],
$$

where $H=\operatorname{diag}\left(1 / y_{i}^{2}\right)$ is Hessian of the objective

- solve this system by block elimination

$$
\begin{aligned}
\Delta x & =-\left(A^{T} H A\right)^{-1}\left(A^{T} g-A^{T} H r_{p}\right) \\
\Delta y & =-A \Delta x-r_{p} \\
\Delta \nu & =-H \Delta y-g-\nu
\end{aligned}
$$

- options for computing Δx :
- form $A^{T} H A$, then use dense or sparse Cholesky factorization
- solve (diagonally scaled) least-squares problem

$$
\Delta x=\operatorname{argmin}_{z}\left\|H^{1 / 2} A z-H^{1 / 2} r_{p}+H^{-1 / 2} g\right\|_{2}
$$

- use iterative method such as conjugate gradients to (approximately) solve for Δx

Infeasible start Newton method algorithm

given starting point $x, y \succ 0$, tolerance $\epsilon>0, \alpha \in(0,1 / 2), \beta \in(0,1)$.
$\nu:=0$.
repeat

1. Compute Newton step $(\Delta x, \Delta y, \Delta \nu)$ by block elimination.
2. Backtracking line search on $\|r\|_{2}$.

$$
t:=1
$$

$$
\text { while } y+t \Delta y \nsucc 0, \quad t:=\beta t
$$

$$
\text { while }\|r(x+t \Delta x, y+t \Delta y, \nu+t \Delta \nu)\|_{2}>(1-\alpha t)\|r(x, y, \nu)\|_{2}
$$ $t:=\beta t$.

3. Update. $x:=x+t \Delta x, y:=y+t \Delta y, \nu:=\nu+t \Delta \nu$. until $y=b-A x$ and $\|r(x, y, \nu)\|_{2} \leq \epsilon$.

Properties

- once any equality constraint is satisfied, it remains satisfied for all future iterates
- once a step size $t=1$ is taken, all equality constraints are satisfied
- if $\operatorname{dom} \Phi \neq \emptyset, t=1$ occurs in finite number of steps
- if $\operatorname{dom} \Phi=\emptyset$, algorithm never converges

Pruning constraints

- let x^{*} be analytic center of $\mathcal{P}=\left\{z \mid a_{i}^{T} z \preceq b_{i}, i=1, \ldots, m\right\}$
- let H^{*} be Hessian of barrier at x^{*},

$$
H^{*}=-\left.\nabla^{2} \sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} z\right)\right|_{z=x^{*}}=\sum_{i=1}^{m} \frac{a_{i} a_{i}^{T}}{\left(b_{i}-a_{i}^{T} x^{*}\right)^{2}}
$$

- then, $\mathcal{P} \subseteq \mathcal{E}=\left\{z \mid\left(z-x^{*}\right)^{T} H^{*}\left(z-x^{*}\right) \leq m^{2}\right\}$
define (ir)relevance measure $\eta_{i}=\frac{b_{i}-a_{i}^{T} x^{*}}{\sqrt{a_{i}^{T} H^{*-1} a_{i}}}$
- η_{i} / m is normalized distance from hyperplane $a_{i}^{T} x=b_{i}$ to outer ellipsoid
- if $\eta_{i} \geq m$, then constraint $a_{i}^{T} x \leq b_{i}$ is redundant
common ACCPM constraint dropping schemes:
- drop all constraints with $\eta_{i} \geq m$ (guaranteed to not change \mathcal{P})
- drop constraints in order of irrelevance, keeping constant number, usually $3 n-5 n$

PWL lower bound on convex function

- suppose f is convex, and $g^{(i)} \in \partial f\left(x^{(i)}\right), i=1, \ldots, m$
- then we have

$$
\hat{f}(z)=\max _{i=1, \ldots, m}\left(f\left(x^{(i)}\right)+g^{(i) T}\left(z-x^{(i)}\right)\right) \leq f(z)
$$

- \hat{f} is PWL lower bound on f

Lower bound in ACCPM

- in solving convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{1}(x) \leq 0 \\
& C x \preceq d
\end{array}
$$

(by taking max of constraint functions we can assume there is only one)

- we have evaluated f_{0} and subgradient g_{0} at $x^{(1)}, \ldots, x^{(q)}$
- we have evaluated f_{1} and subgradient g_{1} at $x^{(q+1)}, \ldots, x^{(k)}$
- form piecewise-linear approximations \hat{f}_{0}, \hat{f}_{1}
- form PWL relaxed problem

$$
\begin{array}{ll}
\operatorname{minimize} & \hat{f}_{0}(x) \\
\text { subject to } & \hat{f}_{1}(x) \leq 0 \\
& C x \preceq d
\end{array}
$$

(can be solved via LP)

- optimal value is a lower bound on p^{\star}
- can easily construct a lower bound on the PWL relaxed problem, as a by-product of the analytic centering computation
- this, in turn, gives a lower bound on the original problem
- form dual of PWL relaxed problem

$$
\begin{array}{cl}
\text { maximize } & \sum_{i=1}^{q} \lambda_{i}\left(f_{0}\left(x^{(i)}\right)-g_{0}^{(i) T} x^{(i)}\right) \\
& +\sum_{i=q+1}^{k} \lambda_{i}\left(f_{1}\left(x^{(i)}\right)-g_{1}^{(i) T} x^{(i)}\right)-d^{T} \mu \\
\text { subject to } & \sum_{i=1}^{q} \lambda_{i} g_{0}^{(i)}+\sum_{i=q+1}^{k} \lambda_{i} g_{1}^{(i)}+C^{T} \mu=0 \\
& \mu \succeq 0, \quad \lambda \succeq 0, \quad \sum_{i=1}^{q} \lambda_{i}=1,
\end{array}
$$

- optimality condition for $x^{(k+1)}$

$$
\begin{aligned}
& \sum_{i=1}^{q} \frac{g_{0}^{(i)}}{f_{\text {best }}^{(i)}-f_{0}\left(x^{(i)}\right)-g_{0}^{(i) T}\left(x^{(k+1)}-x^{(i)}\right)} \\
& \quad \sum_{i=q+1}^{k} \frac{g_{1}^{(i)}}{-f_{1}\left(x^{(i)}\right)-g_{1}^{(i) T}\left(x^{(k+1)}-x^{(i)}\right)}
\end{aligned}+\sum_{i=1}^{m} \frac{c_{i}}{d_{i}-c_{i}^{T} x^{(k+1)}=0}
$$

- take $\tau_{i}=1 /\left(f_{\text {best }}^{(i)}-f_{0}\left(x^{(i)}\right)-g_{0}^{(i) T}\left(x^{(k+1)}-x^{(i)}\right)\right)$ for $i=1, \ldots, q$.
- construct a dual feasible point by taking

$$
\begin{aligned}
& \lambda_{i}= \begin{cases}\tau_{i} / \mathbf{1}^{T} \tau & \text { for } i=1, \ldots, q \\
1 /\left(-f_{1}\left(x^{(i)}\right)-g_{1}^{(i) T}\left(x^{(k+1)}-x^{(i)}\right)\right)\left(\mathbf{1}^{T} \tau\right) & \text { for } i=q+1, \ldots, k,\end{cases} \\
& \mu_{i}=1 /\left(d_{i}-c_{i}^{T} x^{(k+1)}\right)\left(\mathbf{1}^{T} \tau\right) \quad i=1, \ldots, m
\end{aligned}
$$

- using these values of λ and μ, we conclude that

$$
p^{\star} \geq l^{(k+1)}
$$

$$
\begin{aligned}
& \text { where } l^{(k+1)}= \\
& \sum_{i=1}^{q} \lambda_{i}\left(f_{0}\left(x^{(i)}\right)-g_{0}^{(i) T} x^{(i)}\right)+\sum_{i=q+1}^{k} \lambda_{i}\left(f_{1}\left(x^{(i)}\right)-g_{1}^{(i) T} x^{(i)}\right)-d^{T} \mu
\end{aligned}
$$

Stopping criterion

since ACCPM isn't a descent method, we keep track of best point found, and best lower bound

- best function value so far: $f_{\text {best }}^{(k)}=\min _{i=1, \ldots, k} f_{0}\left(x^{(k)}\right)$
- best lower bound so far: $l_{\text {best }}^{(k)}=\max _{i=1, \ldots, k} l\left(x^{(k)}\right)$
- can stop when $f_{\text {best }}^{(k)}-l_{\text {best }}^{(k)} \leq \epsilon$
- guaranteed to be ϵ-suboptimal

Example: Piecewise linear minimization

problem instance with $n=20$ variables, $m=100$ terms, $f^{\star} \approx 1.1$

ACCPM with constraint dropping

PWL objective, $n=20$ variables, $m=100$ terms

number of inequalities in \mathcal{P} :

accuracy versus approximate cumulative flop count

Epigraph ACCPM

PWL objective, $n=20$ variables, $m=100$ terms

