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Analytic center cutting-plane method

analytic center of polyhedron P = {z |alz <b;, i=1,...,m} is

AC(P) = argmin — Z log(b; — a 2)

1=1

ACCPM is localization method with next query point z(*+1) = AC(P},)
(found by Newton's method)
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ACCPM algorithm

given an initial polyhedron Py known to contain X.
k:=0.
repeat

Compute z(F+1) = AC(P}).

Query cutting-plane oracle at z(*+1).

If A+ € X, quit.

Else, add returned cutting-plane inequality to P.

Pri1:=PpN{z|alz < b}
|f Pk_|_1 = @, quit.
k:=k+ 1.
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Constructing cutting-planes

minimize  fo(x)
subject to  fi(z) <0, i=1,...,m

fo,..., fm : R" = R convex; X is set of optimal points; p* is optimal value

e if x is not feasible, say f;(x) > 0, we have (deep) feasibility cut
fi(z) +gj(z—2) <0,  g; €0f;()
e if = is feasible, we have (deep) objective cut

60 (2 — ) + fo(x) = foedy <0, g0 € Ofo(w)
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Computing the analytic center

we must solve the problem
minimize ®(z) = —>_"" log(b; — a] x)

where dom® = {z | alx < b;, i=1,...,m}
e challenge: we are not given a point in dom ¢
e some options:

— use phase | method to find a point in dom @ (or determine that
dom ® = ()); then use standard Newton method to compute AC

— use infeasible start Newton method starting from a point outside
dom ¢
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Infeasible start Newton method

minimize —>_" logy;
subjectto y=0b— Ax
with variables  and y

e can be started from any x and any y > 0

e c.g.: take initial & as previous point ey, and choose y as

1

o b; —alx bi—aiTx>O
Yi=19 1 otherwise
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e define primal and dual residuals as

ATy ]

Tp:y—i—AlU—b, rd:[g_|_y

where ¢ = —diag(1/y;)1 is gradient of objective and r = (rg4, 7))

e Newton step at (z,y,v) is defined by

0 0 AT | [ Ax |
0 H I Ay :—[Td],
AT 0 || Av P

where H = diag(1/y?) is Hessian of the objective
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e solve this system by block elimination

Ar = —(ATHA) Y (A'g— ATHr)
Ay = —-AAx—r,
Av = —HAy—g—v

e options for computing Ax:

— form AT H A, then use dense or sparse Cholesky factorization
— solve (diagonally scaled) least-squares problem

Ax = argmin, ‘H1/2Az — H1/27“p -+ H_1/29H2

— use iterative method such as conjugate gradients to (approximately)
solve for Ax
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Infeasible start Newton method algorithm

given starting point x, y = 0, tolerance ¢ > 0, o € (0,1/2), 8 € (0,1).
v .= 0.
repeat
1. Compute Newton step (Ax, Ay, Av) by block elimination.
2. Backtracking line search on ||r||2.
t:=1.
while y 4+ tAy ¥ 0, t:= [Bt.
while ||r(x + tAx,y + tAy, v+ tAv)|s > (1 — at)||r(z,y,v)
t .= pt.
3. Update. x .=z +tAzx, y .=y +tAy, v :=v + tAv.
until y =0 — Az and ||r(x,y,v)|2 <e.
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Properties

e once any equality constraint is satisfied, it remains satisfied for all future
iterates

e once a step size t = 1 is taken, all equality constraints are satisfied
e if dom® +# (), t = 1 occurs in finite number of steps

e if dom ® = (), algorithm never converges
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Pruning constraints

e let 2* be analytic center of P = {2 | al2 <b;, i=1,...,m}

e let H* be Hessian of barrier at x*,

* i a;a
H* = -V? Zlog(bi —a; 2) - Z (b; — al'x*)?

e then, PCE={z| (2 —2*)TH*(z — %) < m?}

T, %
bi —a; x

\/az-TH*—lai

define (ir)relevance measure n; =

EE364b, Stanford University
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T

e 7);/m is normalized distance from hyperplane a; x = b; to outer ellipsoid

e if n; > m, then constraint a;-ra: < b; Is redundant

common ACCPM constraint dropping schemes:

e drop all constraints with 7; > m (guaranteed to not change P)

e drop constraints in order of irrelevance, keeping constant number,
usually 3n — 5n
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PWL lower bound on convex function

e suppose f is convex, and ¢V € 9f(x()), i=1,....,m

e then we have

fz) = max (f@D)+gDT(z =D))< f(2)

e fis PWL lower bound on f
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Lower bound in ACCPM

e in solving convex problem

minimize  fo(x)
subject to  fi(z) <0
Cx =d

(by taking max of constraint functions we can assume there is only one)
e we have evaluated f, and subgradient go at z(1), ... z(@
e we have evaluated f; and subgradient ¢; at z(¢tD) .. . z(*)

e form piecewise-linear approximations fq, f1
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e form PWL relaxed problem
minimize  fo(x)
subject to fl( ) <0,
Cxr=<d

(can be solved via LP)
e optimal value is a lower bound on p*

e can easily construct a lower bound on the PWL relaxed problem, as a
by-product of the analytic centering computation

e this, in turn, gives a lower bound on the original problem
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e form dual of PWL relaxed problem

maximize S  Ai(fo(#®) — g{T2(®)
) ©)T (3
+ X g MlAa®) — g1 SU”)—dTu

subject to T Aigéi) + Zf:qﬂ zgl )+ CTy
uw>=0, X>=0, ToN=1,

e optimality condition for z(+1)
q i
i

; (4)

0D~ folz®) — g (@t — 2

k (2) m

2

1=1
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i=q+1 —f1(z®) — gy)T(a:(kH) — (1) d; — clz(k+1)

= 0.
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o take 7; = 1/(fiek, — fo(2®) — T (24D — 2)) for i =1,...,q.

e construct a dual feasible point by taking

. /11T fori=1,...,q
Ll (- A®) = g T @D 20N AT fori=q+1,... kK
w, = 1/(d; — T *NaTry i=1,...,m.

e using these values of A and u, we conclude that

p* > 1D

where [(F+1) = AT s ) ' I
=1 )‘i(fO(iU(Z)) - 9(()Z> 37(1)) + Zz’zq—l—l Ai(fl(x(z)) - QJ(LZ) f(z)) —d"p.
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Stopping criterion

since ACCPM isn’t a descent method, we keep track of best point found,
and best lower bound

e best function value so far: fégt = '—r{linkfo(x<k))
e best lower bound so far: lgz)st = ._rrllaxkl(x(k))

e can stop when féigt — lffz)st <e

e guaranteed to be e-suboptimal
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Example: Piecewise linear minimization

problem instance with n = 20 variables, m = 100 terms, f* ~ 1.1
1
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fbest — f*
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ACCPM with constraint dropping
PWL objective, n = 20 variables, m = 100 terms
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number of inequalities in P:
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accuracy versus approximate cumulative flop count

10' ¢ ‘ _
: —— no droppin
- - keeping 3n,

A

10"

0 50 100 150 200

EE364b, Stanford University



Epigraph ACCPM

PWL objective, n = 20 variables, m = 100 terms
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