1.1 (a) For each of the following convex functions, determine the subdifferential set at the specified point.

i. \(f(x_1, x_2, x_3) = \max\{|x_1|, |x_2|, |x_3|\} \) at \((x_1, x_2, x_3) = (0, 0, 0)\).

ii. \(f(x) = e^{\|x\|} \) at \(x = 0 \) (\(x \) is a scalar).

iii. \(f(x_1, x_2) = \max\{x_1 + x_2 - 1, x_1 - x_2 + 1\} \) at \((x_1, x_2) = (1, 1)\).

(b) For each of the following convex functions, explain how to calculate a subgradient at a given \(x \).

i. \(f(x) = \max_{i=1,\ldots,m} (a_i^T x + b_i) \).

ii. \(f(x) = \max_{i=1,\ldots,m} |a_i^T x + b_i| \).

iii. \(f(x) = \max_{i=1,\ldots,m} (-\log (a_i^T x + b_i)) \). You may assume \(x \) is in the domain of \(f \).

iv. \(f(x) = \sup_{0 \leq t \leq 1} p(t) \), where \(p(t) = x_1 + x_2 t + \cdots + x_n t^{n-1} \).

v. \(f(x) = x_{[1]} + \cdots + x_{[k]} \), where \(x_{[i]} \) denotes the \(i \)th largest element of the vector \(x \).

vi. \(f(x) = \inf_{A y \preceq b} \|x - y\|^2 \), \(i.e., \) the square of the distance of \(x \) to the polyhedron defined by \(A y \preceq b \). You may assume that the inequalities \(A y \preceq b \) are strictly feasible.

vii. \(f(x) = \sup_{A y \preceq b} y^T x \), \(i.e., \) the optimal value of an LP as a function of the cost vector. (You can assume that the polyhedron defined by \(A y \preceq b \) is bounded.)

1.2 Convex functions that are not subdifferentiable. Verify that the following functions, defined on the interval \([0, \infty)\), are convex, but not subdifferentiable at \(x = 0 \).

(a) \(f(0) = 1, \text{ and } f(x) = 0 \) for \(x > 0 \).

(b) \(f(x) = -\sqrt{x} \).

1.5 Subgradient optimality conditions for nondifferentiable inequality constrained optimization. Consider the problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m,
\end{align*}
\]

with variable \(x \in \mathbb{R}^n \). We do not assume that \(f_0, \ldots, f_m \) are convex. Suppose that \(\tilde{x} \) and \(\tilde{\lambda} \geq 0 \) satisfy primal feasibility,

\[
\begin{align*}
f_i(\tilde{x}) & \leq 0, \quad i = 1, \ldots, m,
\end{align*}
\]

\[
\begin{align*}
f_0(\tilde{x}) & \leq \sup_{A y \preceq b} y^T \tilde{x}.
\end{align*}
\]
dual feasibility,
\[0 \in \partial f_0(\bar{x}) + \sum_{i=1}^{m} \tilde{\lambda}_i \partial f_i(\bar{x}), \]
and the complementarity condition
\[\tilde{\lambda}_i f_i(\bar{x}) = 0, \quad i = 1, \ldots, m. \]
Show that \(\bar{x} \) is optimal, using only a simple argument, and definition of subgradient. Recall that we do not assume the functions \(f_0, \ldots, f_m \) are convex.

1.9 Conjugacy and subgradients. In this question, we show how conjugate functions are related to subgradients. Let \(f \) be convex and recall that its conjugate is \(f^*(v) = \sup_x \{ v^T x - f(x) \} \). Prove the following:

(a) For any \(v \) we have \(v^T x \leq f(x) + f^*(v) \) (this is sometimes called Young’s inequality).
(b) We have \(g^T x = f(x) + f^*(g) \) if and only if \(g \in \partial f(x) \).

Note that (you do not need to prove this) if \(f \) is closed, so that \(f(x) = f^{**}(x) \), result (b) implies the duality relationship that \(g \in \partial f(x) \) if and only if \(x \in \partial f^*(g) \) if and only if \(g^T x = f(x) + f^*(g) \).

1.10 If a function has a unique subgradient at a given point, is the function differentiable at that point? Provide a proof or a counter example.

1.12 Consider the function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) given by
\[f(x_1, x_2) = \max \left\{ \frac{1}{2} \|x\|^2 - x_1, \frac{1}{2} \|x\|^2 + x_1 \right\} \]

(a) Determine the subdifferential set \(\partial f(x) \) for \(x \in \mathbb{R}^2 \).
(b) Are the subgradients uniformly bounded over \(x \in \mathbb{R}^2 \)? Would your answer change if \(x \) is restricted to lie in the set \(X = \{ x \in \mathbb{R}^2 \mid \|x\| \leq 1 \} \)? If yes, provide a bound for the subgradient norms.

2.3 Matrix norm approximation. We consider the problem of approximating a given matrix \(B \in \mathbb{R}^{p \times q} \) as a linear combination of some other given matrices \(A_i \in \mathbb{R}^{p \times q}, i = 1, \ldots, n, \) as measured by the matrix norm (maximum singular value):
\[\text{minimize} \quad \|x_1 A_1 + \cdots + x_n A_n - B\|. \]

(a) Explain how to find a subgradient of the objective function at \(x \).
(b) Generate a random instance of the problem with \(n = 5, p = 3, q = 6 \). Use CVX to find the optimal value \(f^* \) of the problem. Use a subgradient method to solve the problem, starting from \(x = 0 \). Plot \(f - f^* \) versus iteration. Experiment with several step size sequences.