1.1 (3 points) For each of the following convex functions, determine the subdifferential set at the specified point.

(a) \(f(x_1, x_2, x_3) = \max\{|x_1|, |x_2|, |x_3|\} \) at \((x_1, x_2, x_3) = (0, 0, 0)\).
(b) \(f(x) = e^{|x|} \) at \(x = 0\) (\(x\) is a scalar).
(c) \(f(x_1, x_2) = \max\{x_1 + x_2 - 1, x_1 - x_2 + 1\} \) at \((x_1, x_2) = (1, 1)\).

1.2 (7 points) For each of the following convex functions, explain how to calculate a subgradient at a given \(x\).

(a) \(f(x) = \max_{i=1, \ldots, m} (a_i^T x + b_i) \).
(b) \(f(x) = \max_{i=1, \ldots, m} |a_i^T x + b_i| \).
(c) \(f(x) = \max_{i=1, \ldots, m} (-\log (a_i^T x + b_i)) \). You may assume \(x\) is in the domain of \(f\).
(d) \(f(x) = \max_{0 \leq t \leq 1} p(t) \), where \(p(t) = x_1 + x_2 t + \cdots + x_n t^{n-1}\).
(e) \(f(x) = x_{[1]} + \cdots + x_{[k]} \), where \(x_{[i]}\) denotes the \(i\)th largest element of the vector \(x\).
(f) \(f(x) = \min_{Ay \leq b} \|x - y\|^2 \), i.e., the square of the distance of \(x\) to the polyhedron defined by \(Ay \leq b\). You may assume that the inequalities \(Ay \leq b\) are strictly feasible. (\(\text{Hint: You may use duality, and then use subgradient the rule for pointwise maximum}\))
(g) \(f(x) = \max_{Ay \leq b} y^T x \), i.e., the optimal value of an LP as a function of the cost vector. (You can assume that the polyhedron defined by \(Ay \leq b\) is bounded.) (\(\text{Hint: You may use the subgradient rule for pointwise maximum}\))

1.3 (2 points) Convex functions that are not subdifferentiable. Verify that the following functions, defined on the interval \([0, \infty)\), are convex, but not subdifferentiable at \(x = 0\). (\(\text{Hint: You can prove by contradiction, i.e., assuming that the subgradient condition holds to reach a contradiction}\))

(a) \(f(0) = 1, \text{ and } f(x) = 0 \) for \(x > 0\).
(b) \(f(x) = -x^p \) for some \(p \in (0, 1)\).

1.4 (6 points) Conjugacy, subgradients and \(L_p\)-norms. In the first part of this question, we show how conjugate functions are related to subgradients. Let \(f: \mathbb{R}^n \to \mathbb{R} \) be convex and recall that its conjugate is \(f^*(v) = \sup_x \{v^T x - f(x)\} \). Prove the following:

(a) For any \(v\) we have \(v^T x \leq f(x) + f^*(v)\) (this is sometimes called Young’s inequality).
1.5 Optional (extra credit, 6 points). Non-convex non-differentiable functions, Clarke subdifferentials and Neural Networks. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a given function that we do not assume to be convex nor to be differentiable (e.g., a deep neural network with ReLU activation functions), so that the subdifferential $\partial f(x) = \{ g \in \mathbb{R}^n \mid f(y) \geq f(x) + g^T(y - x) \ \forall y \}$ is possibly an empty set. In this question, we explore a more general notion of subdifferentials, namely, Clarke subdifferentials, originally referred to as generalized gradients [Cla75].

We make the following technical assumption: we assume that f is locally Lipschitz, i.e., for any $x \in \mathbb{R}^n$, there exists $\eta > 0$ and $L_x > 0$ such that $|f(y) - f(z)| \leq L_x \|y - z\|_2$ for any y, z such that $\|x - y\|_2, \|x - z\|_2 \leq \eta$. Then, it follows that the function f is differentiable almost everywhere with respect to the Lebesgue measure (this result is sometimes referred to as Rademacher’s theorem [BL10]). We denote by D the subset of \mathbb{R}^n where f is differentiable. In other words, if we consider a bounded open set B in \mathbb{R}^n and we pick x uniformly at random in B, then f is differentiable at x with probability equal to 1.

The Clarke subdifferential of f at x is defined as

$$\partial_C f(x) = \text{Co} \left\{ \lim_{k \to \infty} \nabla f(x_k) \mid x_k \to x, x_k \in D, \lim_{k \to \infty} \nabla f(x_k) \text{ exists} \right\} .$$
The goal of this exercise is to characterize some basic properties of Clarke subdifferentials, relate \(\partial_C f(x) \) to \(\partial f(x) \) and study some implications of the condition \(0 \in \partial_C f(x) \), which is necessary and sufficient for global optimality in the convex case. Prove the following:

(a) If \(f \) is a continuously differentiable function then \(\partial_C f(x) = \{ \nabla f(x) \} \).

(b) If \(f \) is convex then \(\partial_C f(x) \subseteq \partial f(x) \). (Optional, no credit) Show that equality actually holds, i.e., \(\partial_C f(x) = \partial f(x) \). Hint: Suppose by contradiction that there exists \(g \in \partial f(x) \) such that \(g \notin \partial_C f(x) \). Set \(h(x) = f(x) - g^T x \). Show that \(0 \in \partial h(x) \) and \(0 \notin \partial_C h(x) \). Use the hyperplane separation theorem to conclude.

We say that \(x \) is Clarke stationary if \(0 \in \partial_C f(x) \). If \(f \) is convex, then, from (b), we know that \(x \) is a global minimizer of \(f \). For a non-convex function \(f \), this property does not extend in general as we explore next.

(c) Suppose that \(x \) is a local minimum (resp. maximum) of \(f \), i.e., there exists a radius \(\eta > 0 \) such that \(f(y) \geq f(x) \) (resp. \(f(y) \leq f(x) \)) for any \(y \) such that \(\|y - x\|_2 \leq \eta \). Show that \(x \) is Clarke stationary. Hint: suppose by contradiction that \(0 \notin \partial_C f(x) \) and conclude by using the hyperplane separating theorem with the convex sets \(\partial_C f(x) \) and \(\{0\} \).

(d) Suppose that \(\inf_x f(x) > -\infty \) and that \(\inf_x f(x) \) is attained. Show that if \(x \) is the unique Clarke stationary point of \(f \), then \(x \) is the unique global minimizer of \(f \).

Finally, we study two examples of non-convex non-differentiable functions: a two-dimensional input function which has a unique Clarke stationary point that is the global minimizer, and, a neural network training loss which has a spurious Clarke stationary point at \((0, \ldots, 0)\).

(e) Consider the function with two-dimensional inputs \(f(x_1, x_2) = 10 |x_2 - x_1^2| + (1 - x_1)^2 \). Show that the unique Clarke stationary point of \(f \) is \((x_1, x_2) = (1, 1)\) and that it is the unique global minimizer of \(f \).

(f) Consider a supervised learning setting with a neural network parameterization: let \(X \in \mathbb{R}^{n \times d} \) be a given data matrix and \(y \in \mathbb{R}^n \) be a vector of real-valued observations. For the neural network parameters \(u_1, \ldots, u_m \in \mathbb{R}^d \) and \(\alpha_1, \ldots, \alpha_m \in \mathbb{R} \), consider the loss function

\[
 f(u_1, \ldots, u_m, \alpha_1, \ldots, \alpha_m) = \|y - \sum_{i=1}^m \sigma(Xu_i)\alpha_i\|_2^2,
\]

where we have introduced the component-wise ReLU activation function \(\sigma \) defined as \(\sigma(z) = (\max\{z_1, 0\}, \ldots, \max\{z_n, 0\}) \in \mathbb{R}^n \) for \(z = (z_1, \ldots, z_n) \in \mathbb{R}^n \). Show that \(0 \in \partial_C f(0, \ldots, 0, 0, \ldots, 0) \).
References
