EE364b Spring 2021 Homework 1
Due Friday 4/9 at 11:59pm via Gradescope

1.1 (6 points) Subdifferential sets. For each of the following convex functions, determine
the subdifferential set at the specified point.

(a) \(f(x) = \text{ReLU}(x) \triangleq \max(x, 0) \) at \(x = 0 \)
(b) \(f(x) = \max(x, 0)^2 \) at \(x = 0 \)
(c) \(f(x_1, x_2, x_3) = |x_1| + 2|x_2| + 3|x_3| \) at \((x_1, x_2, x_3) = (0, 0, 1) \).
(d) \(f(x_1, x_2, x_3) = \max\{|x_1|, |x_2|, |x_3|\} \) at \((x_1, x_2, x_3) = (0, 0, 0) \).
(e) \(f(x) = e^{|x|} \) at \(x = 0 \) (\(x \) is a scalar).
(f) \(f(x_1, x_2) = \max\{x_1 + x_2 - 1, x_1 - x_2 + 1\} \) at \((x_1, x_2) = (1, 1) \).

1.2 (3 points) Does autodiff work? Calculate a ‘gradient’ of the following functions using
an automatic differentiation (autodiff) method at the specified points. Check whether
the result is a valid subgradient and give an explanation if there is a mismatch. You
may use any programming language and any autodiff package.

(a) \(f(x) = \max(x, 0)^2 \) at \(x = 0 \)
(b) \(f(x) = \min(x, 0) + \max(x, 0) \) at \(x = 0 \)
(c) \(f(x) = \min(x, 0) + \max(x, 0) \) at \(x = 10^{-50} \)
(d) \(f(x) = \min(x, 0) + \max(x, 0) \) at \(x = 10^{-30} \)
(e) \(f(x) = \min(|x|, x) \) at \(x = 0 \)
(f) \(f(x) = \min(x, |x|) \) at \(x = 0 \)

Hint: You can use Pytorch and Google Colab for autodiff (recommended). Please see
the following example which calculates the gradient of \(\text{ReLU}(x) = \max(x, 0) \) at \(x = 0 \).

```python
import torch
x = torch.tensor([0.], requires_grad=True)
zero = torch.tensor([0.])
f = torch.max(x, zero)
f.backward()
print(x.grad) #prints the gradient of f with respect to x at its current value
```

1.3 (7 points) Weak subgradient calculus. For each of the following convex functions,
explain how to calculate a subgradient at a given \(x \).

1You can run your python script online on a Google Colaboratory notebook easily:
colab.research.google.com
(a) \(f(x) = \max_{i=1,\ldots,m}(a_i^T x + b_i) \).

(b) \(f(x) = \max_{i=1,\ldots,m} |a_i^T x + b_i| \).

(c) \(f(x) = \max_{i=1,\ldots,m} -\log (a_i^T x + b_i) \). You may assume \(x \) is in the domain of \(f \).

(d) \(f(x) = \max_{0 \leq t \leq 1} p(t) \), where \(p(t) = x_1 + x_2 t + \cdots + x_n t^{n-1} \).

(e) \(f(x) = x[1] + \cdots + x[k] \), where \(x[i] \) denotes the \(i \)th largest element of the vector \(x \).

(f) \(f(x) = \min_{A y \leq b} \| x - y \|^2 \), i.e., the square of the distance of \(x \) to the polyhedron defined by \(Ay \leq b \). You may assume that the inequalities \(Ay \leq b \) are strictly feasible. (Hint: You may use duality, and then use subgradient the rule for pointwise maximum)

(g) \(f(x) = \max_{A y \leq b} y^T x \), i.e., the optimal value of an LP as a function of the cost vector. (You can assume that the polyhedron defined by \(Ay \leq b \) is bounded.) (Hint: You may use the subgradient rule for pointwise maximum)

1.4 (2 points) **Convex functions that are not subdifferentiable.** Verify that the following functions, defined on the interval \([0, \infty)\), are convex, but not subdifferentiable at \(x = 0 \). (Hint: You can prove by contradiction, i.e., assuming that the subgradient condition holds to reach a contradiction)

(a) \(f(0) = 1 \), and \(f(x) = 0 \) for \(x > 0 \).

(b) \(f(x) = -x^p \) for some \(p \in (0, 1) \).

1.5 (6 points) **Conjugacy, subgradients and \(L_p \)-norms.** In the first part of this question, we show how conjugate functions are related to subgradients. Let \(f : \mathbb{R}^n \to \mathbb{R} \) be convex and recall that its conjugate is \(f^*(v) = \sup_x \{ v^T x - f(x) \} \). Prove the following:

(a) For any \(v \) we have \(v^T x \leq f(x) + f^*(v) \) (this is sometimes called Young’s inequality).

(b) We have \(g^T x = f(x) + f^*(g) \) if and only if \(g \in \partial f(x) \).

Note that (you do not need to prove this) if \(f \) is closed, so that \(f(x) = f^{**}(x) \), result (b) implies the duality relationship that \(g \in \partial f(x) \) if and only if \(x \in \partial f^*(g) \) if and only if \(g^T x = f(x) + f^*(g) \).

In the second part of this question, we apply the result (b) to characterize the subdifferentials of the function \(f(x) = \|x\|_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}} \), where \(p \geq 1 \). We denote \(q = \frac{p}{p-1} \) if \(p > 1 \) and \(q = +\infty \) if \(p = 1 \). Note that \(\frac{1}{p} + \frac{1}{q} = 1 \).

(c) Show that for any \(v \) we have \(f^*(v) = \mathcal{I}_q(v) \) where \(\mathcal{I}_q(v) = 0 \) if \(\|v\|_q \leq 1 \) and \(\mathcal{I}_q(v) = +\infty \) if \(\|v\|_q > 1 \).

(d) Deduce from (b) and (c) that for any \(x \) and any \(g \), we have \(g \in \partial f(x) \) if and only if \(g^T x = \|x\|_p \) and \(\|g\|_q \leq 1 \).

(e) Determine \(\partial f(0) \) for \(p = 1, 2, +\infty \).
In the final part of this question, we extend the case $p = 1$ in the context of symmetric matrices. Denote S the set of $n \times n$ real symmetric matrices. For $X \in S$, recall the definition of its nuclear norm $\|X\|_* = \sum_{i=1}^n |\lambda_i(X)|$ where $\lambda_1(X), \ldots, \lambda_n(X)$ are the eigenvalues of X and its operator norm $\|X\| = \sup_{\|z\| = 1} |\lambda_1(X)z|$.

Sometimes referred to as Rademacher’s theorem [BL10], we denote by $\partial f(x)$ the generalized gradients [Cla75].

The goal of this exercise is to characterize some basic properties of Clarke subdifferentials, namely, Clarke subdifferentials, originally referred to as generalized gradients [Cla75].

We make the following technical assumption: we assume that f does not extend in general as we explore next.

The Clarke subdifferential of f at x is defined as

$$ \partial_C f(x) = \text{Co} \left\{ \lim_{k \to \infty} \nabla f(x_k) \mid x_k \to x, x_k \in D, \lim_{k \to \infty} \nabla f(x_k) \text{ exists} \right\}. $$

The goal of this exercise is to characterize some basic properties of Clarke subdifferentials, relate $\partial_C f(x)$ to $\partial f(x)$ and study some implications of the condition $0 \in \partial_C f(x)$, which is necessary and sufficient for global optimality in the convex case. Prove the following:

(a) If f is a continuously differentiable function then $\partial_C f(x) = \{\nabla f(x)\}$.

(b) If f is convex then $\partial_C f(x) \subseteq \partial f(x)$. (Optional, no credit) Show that equality actually holds, i.e., $\partial_C f(x) = \partial f(x)$. Hint: Suppose by contradiction that there exists $g \in \partial f(x)$ such that $g \notin \partial_C f(x)$. Set $h(x) = f(x) - g^T x$. Show that $0 \in \partial h(x)$ and $0 \notin \partial_C h(x)$. Use the hyperplane separation theorem to conclude.

We say that x is Clarke stationary if $0 \in \partial_C f(x)$. If f is convex, then, from (b), we know that x is a global minimizer of f. For a non-convex function f, this property does not extend in general as we explore next.
(c) Suppose that x is a local minimum (resp. maximum) of f, i.e., there exists a radius $\eta > 0$ such that $f(y) \geq f(x)$ (resp. $f(y) \leq f(x)$) for any y such that $\|y - x\|_2 \leq \eta$. Show that x is Clarke stationary. Hint: suppose by contradiction that $0 \notin \partial_C f(x)$ and conclude by using the hyperplane separating theorem with the convex sets $\partial_C f(x)$ and $\{0\}$.

(d) Suppose that $\inf_x f(x) > -\infty$ and that $\inf_x f(x)$ is attained. Show that if x is the unique Clarke stationary point of f, then x is the unique global minimizer of f.

Finally, we study two examples of non-convex non-differentiable functions: a two-dimensional input function which has a unique Clarke stationary point that is the global minimizer, and, a neural network training loss which has a spurious Clarke stationary point at $(0,\ldots,0)$.

(e) Consider the function with two-dimensional inputs $f(x_1, x_2) = 10|x_2 - x_1^2| + (1 - x_1)^2$. Show that the unique Clarke stationary point of f is $(x_1, x_2) = (1, 1)$ and that it is the unique global minimizer of f.

(f) Consider a supervised learning setting with a neural network parameterization: let $X \in \mathbb{R}^{n \times d}$ be a given data matrix and $y \in \mathbb{R}^n$ be a vector of real-valued observations. For the neural network parameters $u_1, \ldots, u_m \in \mathbb{R}^d$ and $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$, consider the loss function

$$f(u_1, \ldots, u_m, \alpha_1, \ldots, \alpha_m) = \|y - \sum_{i=1}^{m} \sigma(Xu_i)\alpha_i\|_2^2,$$

where we have introduced the component-wise ReLU activation function σ defined as $\sigma(z) = (\max\{z_1, 0\}, \ldots, \max\{z_n, 0\}) \in \mathbb{R}^n$ for $z = (z_1, \ldots, z_n) \in \mathbb{R}^n$. Show that $0 \in \partial f_C(0, \ldots, 0, 0, \ldots, 0)$.

References
