$\newcommand{\ones}{\mathbf 1}$

The function $f(x) = \mathbf{max}( 1/2, x, x^2 )$ is convex.

The function $f(x) = \mathbf{min}( 1/2, x, x^2)$ is concave.

The function $f(x) = \mathbf{min}( 1/2, x, x^2)$ is quasilinear.


The square of a convex nonnegative function is convex.

The reciprocal of a positive concave function is convex.


$f(x) = (x^2 + 2)/(x+2)$, with $\mathbf{dom}f = (-\infty, -2)$.

$f$ is convex.

$f$ is concave.


$f(x) = 1/(1-x^2)$, with $\mathbf{dom} f = (-1, 1)$.

$f$ is convex.

$f$ is log-convex.


$f(x) = \max_i x_i - \min_i x_i$ is convex.


$f(x) = \cosh x = (e^x+e^{-x})/2$.

$f$ is convex.

$f$ is log-concave.


For $x \in \mathbb{R}^n$, we define $f(x) = \min\{ k \mid \sum_{i=1}^k |x_i| > 1 \}$, with $f(x) = \infty$ if $\sum_{i=1}^n |x_i| \leq 1$.


Conjugate function.

$f(x) = \mathbf{1}^T(x)_+$ where $(x)_+ = \max\{0,x\}$. What is $f^*$?


We define $(x)_-$ to be $\max\{0,-x\}$, such that $x = (x)_+ - (x)_-$.

The constraint $\mathbf{1}^T(x)_- \leq (1/2) \mathbf{1}^T(x)_+$ defines a convex set.