10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton’s method
- self-concordant functions
- implementation
Unconstrained minimization

minimize $f(x)$

• f convex, twice continuously differentiable (hence $\text{dom } f$ open)
• we assume optimal value $p^\star = \inf_x f(x)$ is attained (and finite)

unconstrained minimization methods

• produce sequence of points $x^{(k)} \in \text{dom } f$, $k = 0, 1, \ldots$ with

$$f(x^{(k)}) \to p^\star$$

• can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^\star) = 0$$
Initial point and sublevel set

algorithms in this chapter require a starting point \(x^{(0)} \) such that

- \(x^{(0)} \in \text{dom } f \)
- sublevel set \(S = \{x \mid f(x) \leq f(x^{(0)}) \} \) is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

- equivalent to condition that \(\text{epi } f \) is closed
- true if \(\text{dom } f = \mathbb{R}^n \)
- true if \(f(x) \to \infty \) as \(x \to \text{bd } \text{dom } f \)

examples of differentiable functions with closed sublevel sets:

\[
f(x) = \log \left(\sum_{i=1}^{m} \exp(a_i^T x + b_i) \right), \quad f(x) = - \sum_{i=1}^{m} \log(b_i - a_i^T x)
\]
Strong convexity and implications

\(f \) is strongly convex on \(S \) if there exists an \(m > 0 \) such that

\[
\nabla^2 f(x) \succeq mI \quad \text{for all } x \in S
\]

implications

- for \(x, y \in S \),

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \| x - y \|_2^2
\]

hence, \(S \) is bounded

- \(p^* > -\infty \), and for \(x \in S \),

\[
f(x) - p^* \leq \frac{1}{2m} \| \nabla f(x) \|_2^2
\]

useful as stopping criterion (if you know \(m \))
Descent methods

\[x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with} \quad f(x^{(k+1)}) < f(x^{(k)}) \]

- other notations: \(x^+ = x + t \Delta x \), \(x := x + t \Delta x \)
- \(\Delta x \) is the step, or search direction; \(t \) is the step size, or step length
- from convexity, \(f(x^+) < f(x) \) implies \(\nabla f(x)^T \Delta x < 0 \) (i.e., \(\Delta x \) is a descent direction)

General descent method.

given a starting point \(x \in \text{dom} \ f \).

repeat

1. Determine a descent direction \(\Delta x \).
2. Line search. Choose a step size \(t > 0 \).
3. Update. \(x := x + t \Delta x \).

until stopping criterion is satisfied.
Line search types

exact line search: \(t = \arg\min_{t>0} f(x + t\Delta x) \)

backtracking line search (with parameters \(\alpha \in (0, 1/2), \beta \in (0, 1) \))
- starting at \(t = 1 \), repeat \(t := \beta t \) until

\[
 f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x
\]

- graphical interpretation: backtrack until \(t \leq t_0 \)
Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom } f$.

repeat

1. $\Delta x := -\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x := x + t\Delta x$.
until stopping criterion is satisfied.

• stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
• convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \leq c^k (f(x^{(0)}) - p^*)$$

$c \in (0, 1)$ depends on m, $x^{(0)}$, line search type
• very simple, but often very slow; rarely used in practice
quadratic problem in \(\mathbb{R}^2 \)

\[f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2) \quad (\gamma > 0) \]

with exact line search, starting at \(x^{(0)} = (\gamma, 1) \):

\[x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1} \right)^k, \quad x_2^{(k)} = \left(\frac{-\gamma - 1}{\gamma + 1} \right)^k \]

- very slow if \(\gamma \gg 1 \) or \(\gamma \ll 1 \)
- example for \(\gamma = 10 \):

![Graph showing the quadratic problem with the given iteration process and initial point.](image-url)
nonquadratic example

\[f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1} \]
a problem in \mathbf{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

‘linear’ convergence, i.e., a straight line on a semilog plot
Steepest descent method

normalized steepest descent direction (at x, for norm $\| \cdot \|)$:

$$\Delta x_{\text{nsd}} = \arg\min\{\nabla f(x)^T v \mid \|v\| = 1\}$$

interpretation: for small v, $f(x + v) \approx f(x) + \nabla f(x)^T v$;
direction Δx_{nsd} is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

$$\Delta x_{\text{sd}} = \|\nabla f(x)\| \ast \Delta x_{\text{nsd}}$$

dsatisfies $\nabla f(x)^T \Delta x_{\text{sd}} = -\|\nabla f(x)\|_2^2$

steepest descent method

- general descent method with $\Delta x = \Delta x_{\text{sd}}$
- convergence properties similar to gradient descent
examples

- Euclidean norm: $\Delta x_{sd} = -\nabla f(x)$
- quadratic norm $\|x\|_P = (x^T P x)^{1/2}$ ($P \in S^n_{++}$): $\Delta x_{sd} = -P^{-1}\nabla f(x)$
- ℓ_1-norm: $\Delta x_{sd} = -\left(\frac{\partial f(x)}{\partial x_i}\right)e_i$, where $|\frac{\partial f(x)}{\partial x_i}| = \|\nabla f(x)\|_{\infty}$

unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1-norm:
choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show \(\{ x \mid \| x - x^{(k)} \|_P = 1 \} \)
- equivalent interpretation of steepest descent with quadratic norm \(\| \cdot \|_P \): gradient descent after change of variables \(\bar{x} = P^{1/2}x \)

shows choice of \(P \) has strong effect on speed of convergence
Newton step

\[\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x) \]

interpretations

- \(x + \Delta x_{nt} \) minimizes second order approximation

\[\hat{f}(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v \]

- \(x + \Delta x_{nt} \) solves linearized optimality condition

\[\nabla f(x + v) \approx \nabla \hat{f}(x + v) = \nabla f(x) + \nabla^2 f(x) v = 0 \]
• Δx_{nt} is steepest descent direction at x in local Hessian norm

$$\|u\|\nabla^2 f(x) = (u^T \nabla^2 f(x) u)^{1/2}$$

dashed lines are contour lines of f; ellipse is $\{x + v \mid v^T \nabla^2 f(x) v = 1\}$
arrow shows $-\nabla f(x)$
Newton decrement

\[\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \right)^{1/2} \]

a measure of the proximity of \(x \) to \(x^* \)

properties

- gives an estimate of \(f(x) - p^* \), using quadratic approximation \(\hat{f} \):
 \[f(x) - \inf_y \hat{f}(y) = \frac{1}{2} \lambda(x)^2 \]

- equal to the norm of the Newton step in the quadratic Hessian norm
 \[\lambda(x) = \left(\Delta x_{nt}^T \nabla^2 f(x) \Delta x_{nt} \right)^{1/2} \]

- directional derivative in the Newton direction: \(\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2 \)
- affine invariant (unlike \(\| \nabla f(x) \|_2 \))
Newton’s method

\textbf{given} a starting point \(x \in \text{dom} \, f \), tolerance \(\epsilon > 0 \).

\textbf{repeat}

1. \textit{Compute the Newton step and decrement.}
 \[\Delta x_{nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x). \]

2. \textit{Stopping criterion.} \textbf{quit} if \(\lambda^2 / 2 \leq \epsilon \).

3. \textit{Line search.} Choose step size \(t \) by backtracking line search.

4. \textit{Update.} \(x := x + t \Delta x_{nt} \).

affine invariant, \textit{i.e.}, independent of linear changes of coordinates:

Newton iterates for \(\tilde{f}(y) = f(Ty) \) with starting point \(y^{(0)} = T^{-1}x^{(0)} \) are

\[y^{(k)} = T^{-1}x^{(k)} \]
Classical convergence analysis

assumptions

• f strongly convex on S with constant m
• $\nabla^2 f$ is Lipschitz continuous on S, with constant $L > 0$:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \leq L \|x - y\|_2$$

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0, m^2/L)$, $\gamma > 0$ such that

• if $\|\nabla f(x)\|_2 \geq \eta$, then $f(x^{(k+1)}) - f(x^{(k)}) \leq -\gamma$
• if $\|\nabla f(x)\|_2 < \eta$, then

$$\frac{L}{2m^2}\|\nabla f(x^{(k+1)})\|_2 \leq \left(\frac{L}{2m^2}\|\nabla f(x^{(k)})\|_2\right)^2$$
damped Newton phase \((\|\nabla f(x)\|_2 \geq \eta)\)

- most iterations require backtracking steps
- function value decreases by at least \(\gamma\)
- if \(p^* > -\infty\), this phase ends after at most \((f(x^{(0)}) - p^*)/\gamma\) iterations

quadratically convergent phase \((\|\nabla f(x)\|_2 < \eta)\)

- all iterations use step size \(t = 1\)
- \(\|\nabla f(x)\|_2\) converges to zero quadratically: if \(\|\nabla f(x^{(k)})\|_2 < \eta\), then

\[
\frac{L}{2m^2}\|\nabla f(x^l)\|_2 \leq \left(\frac{L}{2m^2}\|\nabla f(x^k)\|_2\right)^{2^{l-k}} \leq \left(\frac{1}{2}\right)^{2^{l-k}} , \quad l \geq k
\]
conclusion: number of iterations until $f(x) - p^* \leq \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ, ϵ_0 are constants that depend on $m, L, x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ, ϵ_0) are usually unknown
- provides qualitative insight in convergence properties (i.e., explains two algorithm phases)
Examples

Example in \mathbb{R}^2 (page 10–9)

- backtracking parameters $\alpha = 0.1$, $\beta = 0.7$
- converges in only 5 steps
- quadratic local convergence
example in \mathbb{R}^{100} (page 10–10)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm
example in \mathbb{R}^{10000} (with sparse a_i)

$$f(x) = -\sum_{i=1}^{10000} \log(1 - x_i^2) - \sum_{i=1}^{100000} \log(b_i - a_i^T x)$$

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$.
- performance similar as for small examples
Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants \((m, L, \ldots)\)
- bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance \((\text{Nesterov and Nemirovski})\)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions (‘self-concordant’ functions)
- developed to analyze polynomial-time interior-point methods for convex optimization
Self-concordant functions

definition

- convex $f : \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if $|f'''(x)| \leq 2f''(x)^{3/2}$ for all $x \in \text{dom } f$
- $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is self-concordant if $g(t) = f(x + tv)$ is self-concordant for all $x \in \text{dom } f, v \in \mathbb{R}^n$

examples on R

- linear and quadratic functions
- negative logarithm $f(x) = -\log x$
- negative entropy plus negative logarithm: $f(x) = x \log x - \log x$

affine invariance: if $f : \mathbb{R} \rightarrow \mathbb{R}$ is s.c., then $\tilde{f}(y) = f(ay + b)$ is s.c.:

$$
\tilde{f}'''(y) = a^3 f'''(ay + b), \quad \tilde{f}''(y) = a^2 f''(ay + b)
$$
Self-concordant calculus

properties

• preserved under positive scaling $\alpha \geq 1$, and sum
• preserved under composition with affine function
• if g is convex with $\text{dom } g = R_{++}$ and $|g'''(x)| \leq 3g''(x)/x$ then

$$f(x) = \log(-g(x)) - \log x$$

is self-concordant

examples: properties can be used to show that the following are s.c.

• $f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$ on $\{x \mid a_i^T x < b_i, \ i = 1, \ldots, m\}$
• $f(X) = -\log \det X$ on S^n_{++}
• $f(x) = -\log(y^2 - x^T x)$ on $\{(x, y) \mid \|x\|_2 < y\}$
Convergence analysis for self-concordant functions

summary: there exist constants $\eta \in (0, 1/4]$, $\gamma > 0$ such that

- if $\lambda(x) > \eta$, then
 \[f(x^{(k+1)}) - f(x^{(k)}) \leq -\gamma \]

- if $\lambda(x) \leq \eta$, then
 \[2\lambda(x^{(k+1)}) \leq \left(2\lambda(x^{(k)})\right)^2 \]

(η and γ only depend on backtracking parameters α, β)

complexity bound: number of Newton iterations bounded by

\[
\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2 (1/\epsilon)
\]

for $\alpha = 0.1, \beta = 0.8, \epsilon = 10^{-10}$, bound evaluates to $375(f(x^{(0)}) - p^*) + 6$
numerical example: 150 randomly generated instances of

\[
\text{minimize } f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)
\]

○: \(m = 100, n = 50\)
□: \(m = 1000, n = 500\)
◊: \(m = 1000, n = 50\)

- number of iterations much smaller than \(375(f(x^{(0)}) - p^*) + 6\)
- bound of the form \(c(f(x^{(0)}) - p^*) + 6\) with smaller \(c\) (empirically) valid
Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

\[H \Delta x = -g \]

where \(H = \nabla^2 f(x), \ g = \nabla f(x) \)

via Cholesky factorization

\[H = LL^T, \quad \Delta x_{nt} = -L^{-T}L^{-1}g, \quad \lambda(x) = \|L^{-1}g\|_2 \]

- cost \((1/3)n^3 \) flops for unstructured system
- cost \(\ll (1/3)n^3 \) if \(H \) sparse, banded
example of dense Newton system with structure

\[f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \quad H = D + A^T H_0 A \]

- assume \(A \in \mathbb{R}^{p \times n} \), dense, with \(p \ll n \)
- \(D \) diagonal with diagonal elements \(\psi''_i(x_i) \); \(H_0 = \nabla^2 \psi_0(Ax + b) \)

method 1: form \(H \), solve via dense Cholesky factorization: (cost \((1/3)n^3 \))

method 2 (page 9–15): factor \(H_0 = L_0 L_0^T \); write Newton system as

\[
D\Delta x + A^T L_0 w = -g, \quad L_0^T A\Delta x - w = 0
\]

eliminate \(\Delta x \) from first equation; compute \(w \) and \(\Delta x \) from

\[
(I + L_0^T A D^{-1} A^T L_0)w = -L_0^T A D^{-1} g, \quad D\Delta x = -g - A^T L_0 w
\]

cost: \(2p^2n \) (dominated by computation of \(L_0^T A D^{-1} A^T L_0 \))