2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities
Affine set

line through x_1, x_2: all points

$$x = \theta x_1 + (1 - \theta)x_2 \quad (\theta \in \mathbb{R})$$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)
Convex set

line segment between x_1 and x_2: all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \leq \theta \leq 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \leq \theta \leq 1 \quad \Rightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)
Convex combination and convex hull

convex combination of x_1, \ldots, x_k: any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k$$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \geq 0$

convex hull $\text{conv } S$: set of all convex combinations of points in S
Convex cone

conic (nonnegative) combination of x_1 and x_2: any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \geq 0$, $\theta_2 \geq 0$

convex cone: set that contains all conic combinations of points in the set
Hyperplanes and halfspaces

hyperplane: set of the form \(\{ x \mid a^T x = b \} \) \((a \neq 0)\)

\[
\begin{align*}
 \text{hyperplane:} & \quad \{ x \mid a^T x = b \} \\
 & \quad (a \neq 0)
\end{align*}
\]

halfspace: set of the form \(\{ x \mid a^T x \leq b \} \) \((a \neq 0)\)

\[
\begin{align*}
 \text{halfspace:} & \quad \{ x \mid a^T x \leq b \} \\
 & \quad (a \neq 0)
\end{align*}
\]

- \(a\) is the normal vector
- hyperplanes are affine and convex; halfspaces are convex
Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid \|x - x_c\|_2 \leq r\} = \{x_c + ru \mid \|u\|_2 \leq 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \leq 1\}$$

with $P \in \mathbb{S}^n_{++}$ (i.e., P symmetric positive definite)

other representation: $\{x_c + Au \mid \|u\|_2 \leq 1\}$ with A square and nonsingular
Norm balls and norm cones

norm: a function \(\| \cdot \| \) that satisfies

- \(\| x \| \geq 0; \| x \| = 0 \) if and only if \(x = 0 \)
- \(\| tx \| = |t| \| x \| \) for \(t \in \mathbb{R} \)
- \(\| x + y \| \leq \| x \| + \| y \| \)

notation: \(\| \cdot \| \) is general (unspecified) norm; \(\| \cdot \|_{\text{symb}} \) is particular norm

norm ball with center \(x_c \) and radius \(r \): \(\{ x \mid \| x - x_c \| \leq r \} \)

norm cone: \(\{ (x, t) \mid \| x \| \leq t \} \)

Euclidean norm cone is called second-order cone

norm balls and cones are convex
Polyhedra

solution set of finitely many linear inequalities and equalities

\[Ax \preceq b, \quad Cx = d \]

\((A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, \preceq \text{ is componentwise inequality})\)

polyhedron is intersection of finite number of halfspaces and hyperplanes
Positive semidefinite cone

notation:

- \mathbf{S}^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_+^n = \{ X \in \mathbf{S}^n \mid X \succeq 0 \}$: positive semidefinite $n \times n$ matrices
 \[X \in \mathbf{S}_+^n \iff z^T X z \geq 0 \text{ for all } z \]
- \mathbf{S}^n_+ is a convex cone
- $\mathbf{S}^{++}_n = \{ X \in \mathbf{S}^n \mid X \succ 0 \}$: positive definite $n \times n$ matrices

example: \[
\begin{bmatrix}
x & y \\
y & z
\end{bmatrix} \in \mathbf{S}_+^2
\]
Operations that preserve convexity

practical methods for establishing convexity of a set \(C \)

1. apply definition

\[x_1, x_2 \in C, \quad 0 \leq \theta \leq 1 \quad \Rightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C \]

2. show that \(C \) is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity

- intersection
- affine functions
- perspective function
- linear-fractional functions
the intersection of (any number of) convex sets is convex

example:

\[S = \{ x \in \mathbb{R}^m \mid |p(t)| \leq 1 \text{ for } |t| \leq \pi/3 \} \]

where \(p(t) = x_1 \cos t + x_2 \cos 2t + \cdots + x_m \cos mt \)

for \(m = 2 \):
Affine function

suppose $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is affine ($f(x) = Ax + b$ with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$)

- the image of a convex set under f is convex

 \[S \subseteq \mathbb{R}^n \text{ convex} \implies f(S) = \{ f(x) \mid x \in S \} \text{ convex} \]

- the inverse image $f^{-1}(C)$ of a convex set under f is convex

 \[C \subseteq \mathbb{R}^m \text{ convex} \implies f^{-1}(C) = \{ x \in \mathbb{R}^n \mid f(x) \in C \} \text{ convex} \]

examples

- scaling, translation, projection
- solution set of linear matrix inequality \[\{ x \mid x_1 A_1 + \cdots + x_m A_m \preceq B \} \]
 (with $A_i, B \in \mathbb{S}^p$)
- hyperbolic cone \[\{ x \mid x^T P x \leq (c^T x)^2, \ c^T x \geq 0 \} \]
 (with $P \in \mathbb{S}_+^n$)
Perspective and linear-fractional function

perspective function $P : \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x, t) = x/t, \quad \text{dom } P = \{(x, t) \mid t > 0\}$$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f : \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}, \quad \text{dom } f = \{x \mid c^T x + d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex
example of a linear-fractional function

\[f(x) = \frac{1}{x_1 + x_2 + 1} \]
Generalized inequalities

A convex cone $K \subseteq \mathbb{R}^n$ is a proper cone if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

Examples

- Nonnegative orthant $K = \mathbb{R}_+^n = \{x \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \ldots, n\}$
- Positive semidefinite cone $K = S_+^n$
- Nonnegative polynomials on $[0, 1]$:

 $$K = \{x \in \mathbb{R}^n \mid x_1 + x_2 t + x_3 t^2 + \cdots + x_n t^{n-1} \geq 0 \text{ for } t \in [0, 1]\}$$
generalized inequality defined by a proper cone K:

\[x \preceq_K y \iff y - x \in K, \quad x \prec_K y \iff y - x \in \text{int} K \]

elements

- componentwise inequality ($K = \mathbb{R}_+^n$)

\[x \preceq_{\mathbb{R}_+^n} y \iff x_i \leq y_i, \quad i = 1, \ldots, n \]

- matrix inequality ($K = \mathbb{S}_+^n$)

\[X \preceq_{\mathbb{S}_+^n} Y \iff Y - X \text{ positive semidefinite} \]

these two types are so common that we drop the subscript in \preceq_K

properties: many properties of \preceq_K are similar to \leq on \mathbb{R}, e.g.,

\[x \preceq_K y, \quad u \preceq_K v \implies x + u \preceq_K y + v \]
Minimum and minimal elements

\leq_K is not in general a linear ordering: we can have $x \not\leq_K y$ and $y \not\leq_K x$

$x \in S$ is the minimum element of S with respect to \leq_K if

$$y \in S \implies x \leq_K y$$

$x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S, \quad y \leq_K x \implies y = x$$

example ($K = \mathbb{R}^2_+$)

x_1 is the minimum element of S_1

x_2 is a minimal element of S_2
Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0$, b s.t.

$$a^T x \leq b \text{ for } x \in C, \quad a^T x \geq b \text{ for } x \in D$$

the hyperplane $\{x \mid a^T x = b\}$ separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)
Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0:

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C
Dual cones and generalized inequalities

dual cone of a cone K:

$$K^* = \{ y \mid y^T x \geq 0 \text{ for all } x \in K \}$$

examples

- $K = \mathbb{R}^n_+$: $K^* = \mathbb{R}^n_+$
- $K = S^n_+$: $K^* = S^n_+$
- $K = \{(x, t) \mid \|x\|_2 \leq t\}$: $K^* = \{(x, t) \mid \|x\|_2 \leq t\}$
- $K = \{(x, t) \mid \|x\|_1 \leq t\}$: $K^* = \{(x, t) \mid \|x\|_\infty \leq t\}$

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \geq 0 \text{ for all } x \succeq_K 0$$
Minimum and minimal elements via dual inequalities

minimum element w.r.t. \preceq_K

x is minimum element of S iff for all $\lambda \succ_K 0$, x is the unique minimizer of $\lambda^T z$ over S

minimal element w.r.t. \preceq_K

- if x minimizes $\lambda^T z$ over S for some $\lambda \succ_K 0$, then x is minimal
 - if x is a minimal element of a convex set S, then there exists a nonzero $\lambda \succeq_K 0$ such that x minimizes $\lambda^T z$ over S
optimal production frontier

- different production methods use different amounts of resources $x \in \mathbb{R}^n$
- production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbb{R}^n_+

example ($n = 2$)

x_1, x_2, x_3 are efficient; x_4, x_5 are not