9. Numerical linear algebra background

- matrix structure and algorithm complexity
- solving linear equations with factored matrices
- LU, Cholesky, LDL\(^T\) factorization
- block elimination and the matrix inversion lemma
- solving underdetermined equations
Matrix structure and algorithm complexity

cost (execution time) of solving $Ax = b$ with $A \in \mathbb{R}^{n \times n}$

- for general methods, grows as n^3
- less if A is structured (banded, sparse, Toeplitz, . . .)

flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity
vector-vector operations \((x, y \in \mathbb{R}^n)\)

- inner product \(x^T y\): \(2n - 1\) flops (or \(2n\) if \(n\) is large)
- sum \(x + y\), scalar multiplication \(\alpha x\): \(n\) flops

matrix-vector product \(y = Ax\) with \(A \in \mathbb{R}^{m \times n}\)

- \(m(2n - 1)\) flops (or \(2mn\) if \(n\) large)
- \(2N\) if \(A\) is sparse with \(N\) nonzero elements
- \(2p(n + m)\) if \(A\) is given as \(A = UV^T\), \(U \in \mathbb{R}^{m \times p}\), \(V \in \mathbb{R}^{n \times p}\)

matrix-matrix product \(C = AB\) with \(A \in \mathbb{R}^{m \times n}\), \(B \in \mathbb{R}^{n \times p}\)

- \(mp(2n - 1)\) flops (or \(2mnp\) if \(n\) large)
- less if \(A\) and/or \(B\) are sparse
- \((1/2)m(m + 1)(2n - 1) \approx m^2n\) if \(m = p\) and \(C\) symmetric
Linear equations that are easy to solve

diagonal matrices \((a_{ij} = 0 \text{ if } i \neq j)\): \(n\) flops

\[
x = A^{-1}b = (b_1/a_{11}, \ldots, b_n/a_{nn})
\]

lower triangular \((a_{ij} = 0 \text{ if } j > i)\): \(n^2\) flops

\[
x_1 := b_1/a_{11} \\
x_2 := (b_2 - a_{21}x_1)/a_{22} \\
x_3 := (b_3 - a_{31}x_1 - a_{32}x_2)/a_{33} \\
\vdots \\
x_n := (b_n - a_{n1}x_1 - a_{n2}x_2 - \cdots - a_{nn-1}x_{n-1})/a_{nn}
\]
called forward substitution

upper triangular \((a_{ij} = 0 \text{ if } j < i)\): \(n^2\) flops via backward substitution

Numerical linear algebra background
orthogonal matrices: $A^{-1} = A^T$

- $2n^2$ flops to compute $x = A^T b$ for general A
- less with structure, *e.g.*, if $A = I - 2uu^T$ with $\|u\|_2 = 1$, we can compute $x = A^T b = b - 2(u^T b) u$ in $4n$ flops

permutation matrices:

$$a_{ij} = \begin{cases} 1 & j = \pi_i \\ 0 & \text{otherwise} \end{cases}$$

where $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$ is a permutation of $(1, 2, \ldots, n)$

- interpretation: $Ax = (x_{\pi_1}, \ldots, x_{\pi_n})$
- satisfies $A^{-1} = A^T$, hence cost of solving $Ax = b$ is 0 flops

example:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad A^{-1} = A^T = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
The factor-solve method for solving $Ax = b$

- factor A as a product of simple matrices (usually 2 or 3):
 \[A = A_1 A_2 \cdots A_k \]
 (A_i diagonal, upper or lower triangular, etc)

- compute $x = A^{-1}b = A_k^{-1} \cdots A_2^{-1} A_1^{-1}b$ by solving k ‘easy’ equations
 \[A_1 x_1 = b, \quad A_2 x_2 = x_1, \quad \ldots, \quad A_k x = x_{k-1} \]

Cost of factorization step usually dominates cost of solve step

Equations with multiple righthand sides

\[Ax_1 = b_1, \quad Ax_2 = b_2, \quad \ldots, \quad Ax_m = b_m \]

Cost: one factorization plus m solves
LU factorization

every nonsingular matrix A can be factored as

$$A = PLU$$

with P a permutation matrix, L lower triangular, U upper triangular
cost: $(2/3)n^3$ flops

Solving linear equations by LU factorization.

given a set of linear equations $Ax = b$, with A nonsingular.

1. **LU factorization.** Factor A as $A = PLU$ ($(2/3)n^3$ flops).
2. **Permutation.** Solve $Pz_1 = b$ (0 flops).
3. **Forward substitution.** Solve $Lz_2 = z_1$ (n^2 flops).
4. **Backward substitution.** Solve $Ux = z_2$ (n^2 flops).

cost: $(2/3)n^3 + 2n^2 \approx (2/3)n^3$ for large n
sparse LU factorization

\[A = P_1LUP_2 \]

- adding permutation matrix \(P_2 \) offers possibility of sparser \(L, U \) (hence, cheaper factor and solve steps)

- \(P_1 \) and \(P_2 \) chosen (heuristically) to yield sparse \(L, U \)

- choice of \(P_1 \) and \(P_2 \) depends on sparsity pattern and values of \(A \)

- cost is usually much less than \((2/3)n^3\); exact value depends in a complicated way on \(n \), number of zeros in \(A \), sparsity pattern
Cholesky factorization

every positive definite A can be factored as

$$A = LL^T$$

with L lower triangular

cost: $(1/3)n^3$ flops

Solving linear equations by Cholesky factorization.

given a set of linear equations $Ax = b$, with $A \in S^n_{++}$.

1. **Cholesky factorization.** Factor A as $A = LL^T$ ($(1/3)n^3$ flops).
2. **Forward substitution.** Solve $Lz_1 = b$ (n^2 flops).
3. **Backward substitution.** Solve $L^Tx = z_1$ (n^2 flops).

cost: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n
sparse Cholesky factorization

\[A = PLL^T P^T \]

- adding permutation matrix \(P \) offers possibility of sparser \(L \)
- \(P \) chosen (heuristically) to yield sparse \(L \)
- choice of \(P \) only depends on sparsity pattern of \(A \) (unlike sparse LU)
- cost is usually much less than \((1/3)n^3 \); exact value depends in a complicated way on \(n \), number of zeros in \(A \), sparsity pattern
LDL^T factorization

every nonsingular symmetric matrix A can be factored as

$$A = PLDL^TP^T$$

with P a permutation matrix, L lower triangular, D block diagonal with 1×1 or 2×2 diagonal blocks

cost: $(1/3)n^3$

- cost of solving symmetric sets of linear equations by LDL^T factorization:
 $$(1/3)n^3 + 2n^2 \approx (1/3)n^3$$ for large n
- for sparse A, can choose P to yield sparse L; cost $\ll (1/3)n^3$
Equations with structured sub-blocks

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\]

(1)

- variables \(x_1 \in \mathbb{R}^{n_1}, x_2 \in \mathbb{R}^{n_2} \); blocks \(A_{ij} \in \mathbb{R}^{n_i \times n_j} \)
- if \(A_{11} \) is nonsingular, can eliminate \(x_1 \): \(x_1 = A_{11}^{-1}(b_1 - A_{12}x_2) \);
 to compute \(x_2 \), solve

\[
(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1
\]

Solving linear equations by block elimination.

given a nonsingular set of linear equations (1), with \(A_{11} \) nonsingular.

1. Form \(A_{11}^{-1}A_{12} \) and \(A_{11}^{-1}b_1 \).
2. Form \(S = A_{22} - A_{21}A_{11}^{-1}A_{12} \) and \(\tilde{b} = b_2 - A_{21}A_{11}^{-1}b_1 \).
3. Determine \(x_2 \) by solving \(Sx_2 = \tilde{b} \).
4. Determine \(x_1 \) by solving \(A_{11}x_1 = b_1 - A_{12}x_2 \).
dominant terms in flop count

• step 1: \(f + n_2 s \) (\(f \) is cost of factoring \(A_{11} \); \(s \) is cost of solve step)
• step 2: \(2n_2^2 n_1 \) (cost dominated by product of \(A_{21} \) and \(A_{11}^{-1} A_{12} \))
• step 3: \((2/3)n_2^3 \)

total: \(f + n_2 s + 2n_2^2 n_1 + (2/3)n_2^3 \)

examples

• general \(A_{11} \) (\(f = (2/3)n_1^3, s = 2n_1^2 \)): no gain over standard method

\[
\#\text{flops} = (2/3)n_1^3 + 2n_1^2 n_2 + 2n_2^2 n_1 + (2/3)n_2^3 = (2/3)(n_1 + n_2)^3
\]

• block elimination is useful for structured \(A_{11} \) (\(f \ll n_1^3 \))

 for example, diagonal (\(f = 0, s = n_1 \)): \(\#\text{flops} \approx 2n_2^2 n_1 + (2/3)n_2^3 \)
Structured matrix plus low rank term

\[(A + BC')x = b\]

- \(A \in \mathbb{R}^{n \times n}, \ B \in \mathbb{R}^{n \times p}, \ C \in \mathbb{R}^{p \times n}\)
- assume \(A\) has structure \((Ax = b\) easy to solve\)

first write as

\[
\begin{bmatrix}
A & B \\
C & -I
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \begin{bmatrix}
b \\
0
\end{bmatrix}
\]

now apply block elimination: solve

\[(I + CA^{-1}B)y = CA^{-1}b,\]

then solve \(Ax = b - By\)

this proves the \textbf{matrix inversion lemma}: if \(A\) and \(A + BC\) nonsingular,

\[(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}\]
example: A diagonal, B, C dense

- method 1: form $D = A + BC$, then solve $Dx = b$
 cost: $(2/3)n^3 + 2pn^2$

- method 2 (via matrix inversion lemma): solve

$$ (I + CA^{-1}B)y = CA^{-1}b,$$

then compute $x = A^{-1}b - A^{-1}By$

total cost is dominated by (2): $2p^2n + (2/3)p^3$ (i.e., linear in n)
Underdetermined linear equations

if \(A \in \mathbb{R}^{p \times n} \) with \(p < n \), \(\text{rank} \, A = p \),

\[
\{ x \mid Ax = b \} = \{ Fz + \hat{x} \mid z \in \mathbb{R}^{n-p} \}
\]

• \(\hat{x} \) is (any) particular solution
• columns of \(F \in \mathbb{R}^{n \times (n-p)} \) span nullspace of \(A \)
• there exist several numerical methods for computing \(F \)
 (QR factorization, rectangular LU factorization, . . .)