Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

1. Introduction

Outline

Mathematical optimization

Convex optimization

Optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $g_i(x) = 0$, $i = 1, ..., p$

- $x \in \mathbb{R}^n$ is (vector) variable to be chosen (n scalar variables x_1, \dots, x_n)
- $ightharpoonup f_0$ is the **objective function**, to be minimized
- $ightharpoonup f_1, \ldots, f_m$ are the inequality constraint functions
- g_1, \ldots, g_p are the equality constraint functions
- variations: maximize objective, multiple objectives, ...

Finding good (or best) actions

- x represents some action, e.g.,
 - trades in a portfolio
 - airplane control surface deflections
 - schedule or assignment
 - resource allocation
- constraints limit actions or impose conditions on outcome
- the smaller the objective $f_0(x)$, the better
 - total cost (or negative profit)
 - deviation from desired or target outcome
 - risk
 - fuel use

Finding good models

- x represents the parameters in a model
- constraints impose requirements on model parameters (e.g., nonnegativity)
- objective $f_0(x)$ is sum of two terms:
 - a prediction error (or loss) on some observed data
 - a (regularization) term that penalizes model complexity

Worst-case analysis (pessimization)

- variables are actions or parameters out of our control (and possibly under the control of an adversary)
- constraints limit the possible values of the parameters
- ▶ minimizing $-f_0(x)$ finds worst possible parameter values
- if the worst possible value of $f_0(x)$ is tolerable, you're OK
- it's good to know what the worst possible scenario can be

Optimization-based models

- model an entity as taking actions that solve an optimization problem
 - an individual makes choices that maximize expected utility
 - an organism acts to maximize its reproductive success
 - reaction rates in a cell maximize growth
 - currents in a circuit minimize total power
- (except the last) these are very crude models
- and yet, they often work very well

Basic use model for mathematical optimization

- instead of saying how to choose (action, model) x
- you articulate what you want (by stating the problem)
- then let an algorithm decide on (action, model) *x*

Can you solve it?

- generally, no
- but you can try to solve it approximately, and it often doesn't matter

- the exception: convex optimization
 - includes linear programming (LP), quadratic programming (QP), many others
 - we can solve these problems reliably and efficiently
 - come up in many applications across many fields

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

- find a point that minimizes f_0 among feasible points near it
- can handle large problems, e.g., neural network training
- require initial guess, and often, algorithm parameter tuning
- provide no information about how suboptimal the point found is

global optimization methods

- ► find the (global) solution
- worst-case complexity grows exponentially with problem size
- often based on solving convex subproblems

Outline

Mathematical optimization

Convex optimization

Convex optimization

convex optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

- ▶ variable $x \in \mathbf{R}^n$
- equality constraints are linear
- f_0, \ldots, f_m are **convex**: for $\theta \in [0, 1]$,

$$f_i(\theta x + (1 - \theta)y) \le \theta f_i(x) + (1 - \theta)f_i(y)$$

i.e., f_i have nonnegative (upward) curvature

When is an optimization problem hard to solve?

- classical view:
 - linear (zero curvature) is easy
 - nonlinear (nonzero curvature) is hard

the classical view is wrong

- the correct view:
 - convex (nonnegative curvature) is easy
 - nonconvex (negative curvature) is hard

Solving convex optimization problems

- many different algorithms (that run on many platforms)
 - interior-point methods for up to 10000s of variables
 - first-order methods for larger problems
 - do not require initial point, babysitting, or tuning
- can develop and deploy quickly using modeling languages such as CVXPY
- solvers are reliable, so can be embedded
- code generation yields real-time solvers that execute in milliseconds (e.g., on Falcon 9 and Heavy for landing)

Modeling languages for convex optimization

- domain specific languages (DSLs) for convex optimization
 - describe problem in high level language, close to the math
 - can automatically transform problem to standard form, then solve

- enables rapid prototyping
- it's now much easier to develop an optimization-based application
- ideal for teaching and research (can do a lot with short scripts)
- gets close to the basic idea: say what you want, not how to get it

CVXPY example: non-negative least squares

math:

minimize
$$||Ax - b||_2^2$$

subject to $x \ge 0$

- variable is x
- ► A, b given
- ▶ $x \ge 0$ means $x_1 \ge 0, ..., x_n \ge 0$

CVXPY code:

```
import cvxpy as cp
A, b = ...

x = cp.Variable(n)
obj = cp.norm2(A @ x - b)**2
constr = [x >= 0]
prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()
```

Brief history of convex optimization

theory (convex analysis): 1900–1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ...)
- 1970s: ellipsoid method and other subgradient methods
- 1980s & 90s: interior-point methods (Karmarkar, Nesterov & Nemirovski)
- since 2000s: many methods for large-scale convex optimization

applications

- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, communications, circuit design, . . .)
- since 2000s: machine learning and statistics, finance

Summary

convex optimization problems

- are optimization problems of a special form
- arise in many applications
- can be solved effectively
- are easy to specify using DSLs