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Optimization problem

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

gi (x) = 0, i = 1, . . . , p

▶ x ∈ Rn is (vector) variable to be chosen (n scalar variables x1, . . . , xn)
▶ f0 is the objective function, to be minimized
▶ f1, . . . , fm are the inequality constraint functions
▶ g1, . . . , gp are the equality constraint functions

▶ variations: maximize objective, multiple objectives, . . .
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Finding good (or best) actions

▶ x represents some action, e.g.,
– trades in a portfolio
– airplane control surface deflections
– schedule or assignment
– resource allocation

▶ constraints limit actions or impose conditions on outcome
▶ the smaller the objective f0 (x), the better

– total cost (or negative profit)
– deviation from desired or target outcome
– risk
– fuel use
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Finding good models

▶ x represents the parameters in a model
▶ constraints impose requirements on model parameters (e.g., nonnegativity)
▶ objective f0 (x) is sum of two terms:

– a prediction error (or loss) on some observed data
– a (regularization) term that penalizes model complexity
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Worst-case analysis (pessimization)

▶ variables are actions or parameters out of our control
(and possibly under the control of an adversary)

▶ constraints limit the possible values of the parameters
▶ minimizing −f0 (x) finds worst possible parameter values

▶ if the worst possible value of f0 (x) is tolerable, you’re OK
▶ it’s good to know what the worst possible scenario can be
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Optimization-based models

▶ model an entity as taking actions that solve an optimization problem
– an individual makes choices that maximize expected utility
– an organism acts to maximize its reproductive success
– reaction rates in a cell maximize growth
– currents in a circuit minimize total power

▶ (except the last) these are very crude models
▶ and yet, they often work very well

Convex Optimization Boyd and Vandenberghe 1.6



Basic use model for mathematical optimization

▶ instead of saying how to choose (action, model) x
▶ you articulate what you want (by stating the problem)
▶ then let an algorithm decide on (action, model) x
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Can you solve it?

▶ generally, no
▶ but you can try to solve it approximately, and it often doesn’t matter

▶ the exception: convex optimization
– includes linear programming (LP), quadratic programming (QP), many others
– we can solve these problems reliably and efficiently
– come up in many applications across many fields
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Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)
▶ find a point that minimizes f0 among feasible points near it
▶ can handle large problems, e.g., neural network training
▶ require initial guess, and often, algorithm parameter tuning
▶ provide no information about how suboptimal the point found is

global optimization methods
▶ find the (global) solution
▶ worst-case complexity grows exponentially with problem size
▶ often based on solving convex subproblems
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Convex optimization

convex optimization problem:

minimize f0 (x)
subject to fi (x) ≤ 0, i = 1, . . . ,m

Ax = b

▶ variable x ∈ Rn

▶ equality constraints are linear
▶ f0, . . . , fm are convex: for 𝜃 ∈ [0, 1],

fi (𝜃x + (1 − 𝜃)y) ≤ 𝜃fi (x) + (1 − 𝜃)fi (y)

i.e., fi have nonnegative (upward) curvature
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When is an optimization problem hard to solve?

▶ classical view:
– linear (zero curvature) is easy
– nonlinear (nonzero curvature) is hard

▶ the classical view is wrong

▶ the correct view:
– convex (nonnegative curvature) is easy
– nonconvex (negative curvature) is hard
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Solving convex optimization problems

▶ many different algorithms (that run on many platforms)
– interior-point methods for up to 10000s of variables
– first-order methods for larger problems
– do not require initial point, babysitting, or tuning

▶ can develop and deploy quickly using modeling languages such as CVXPY
▶ solvers are reliable, so can be embedded
▶ code generation yields real-time solvers that execute in milliseconds

(e.g., on Falcon 9 and Heavy for landing)
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Modeling languages for convex optimization

▶ domain specific languages (DSLs) for convex optimization
– describe problem in high level language, close to the math
– can automatically transform problem to standard form, then solve

▶ enables rapid prototyping
▶ it’s now much easier to develop an optimization-based application
▶ ideal for teaching and research (can do a lot with short scripts)

▶ gets close to the basic idea: say what you want, not how to get it
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CVXPY example: non-negative least squares

math:

minimize ∥Ax − b∥2
2

subject to x ⪰ 0

▶ variable is x
▶ A, b given
▶ x ⪰ 0 means x1 ≥ 0, . . . , xn ≥ 0

CVXPY code:

import cvxpy as cp

A, b = ...

x = cp.Variable(n)

obj = cp.norm2(A @ x - b)**2

constr = [x >= 0]

prob = cp.Problem(cp.Minimize(obj), constr)

prob.solve()
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Brief history of convex optimization

▶ theory (convex analysis): 1900–1970

▶ algorithms
– 1947: simplex algorithm for linear programming (Dantzig)
– 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )
– 1970s: ellipsoid method and other subgradient methods
– 1980s & 90s: interior-point methods (Karmarkar, Nesterov & Nemirovski)
– since 2000s: many methods for large-scale convex optimization

▶ applications
– before 1990: mostly in operations research, a few in engineering
– since 1990: many applications in engineering (control, signal processing, communications,

circuit design, . . . )
– since 2000s: machine learning and statistics, finance
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Summary

convex optimization problems
▶ are optimization problems of a special form
▶ arise in many applications
▶ can be solved effectively
▶ are easy to specify using DSLs
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