3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities
Definition

\(f : \mathbb{R}^n \to \mathbb{R} \) is convex if \(\text{dom} \ f \) is a convex set and

\[
f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]

for all \(x, y \in \text{dom} \ f \), \(0 \leq \theta \leq 1 \)

- \(f \) is concave if \(-f\) is convex
- \(f \) is strictly convex if \(\text{dom} \ f \) is convex and

\[
f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)
\]

for \(x, y \in \text{dom} \ f \), \(x \neq y \), \(0 < \theta < 1 \)
Examples on R

convex:

• affine: $ax + b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$
• exponential: e^{ax}, for any $a \in \mathbb{R}$
• powers: x^α on \mathbb{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
• powers of absolute value: $|x|^p$ on \mathbb{R}, for $p \geq 1$
• negative entropy: $x \log x$ on \mathbb{R}_{++}

concave:

• affine: $ax + b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$
• powers: x^α on \mathbb{R}_{++}, for $0 \leq \alpha \leq 1$
• logarithm: $\log x$ on \mathbb{R}_{++}
Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

• affine function $f(x) = a^Tx + b$

• norms: $\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \geq 1$; $\|x\|_\infty = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \text{tr}(A^TX) + b = \sum_{i=1}^m \sum_{j=1}^n A_{ij}X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^TX))^{1/2}$$
Restriction of a convex function to a line

\(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex if and only if the function \(g : \mathbb{R} \rightarrow \mathbb{R} \),

\[
g(t) = f(x + tv), \quad \text{dom } g = \{ t \mid x + tv \in \text{dom } f \}
\]
is convex (in \(t \)) for any \(x \in \text{dom } f, v \in \mathbb{R}^n \)
can check convexity of \(f \) by checking convexity of functions of one variable

Example. \(f : S^n \rightarrow \mathbb{R} \) with \(f(X) = \log \det X \), \(\text{dom } f = S^n_{++} \)

\[
g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})
\]

\[
= \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)
\]

where \(\lambda_i \) are the eigenvalues of \(X^{-1/2}VX^{-1/2} \)

\(g \) is concave in \(t \) (for any choice of \(X > 0, V \)); hence \(f \) is concave
Extended-value extension

extended-value extension \(\tilde{f} \) of \(f \) is

\[
\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \quad \tilde{f}(x) = \infty, \quad x \notin \text{dom } f
\]

often simplifies notation; for example, the condition

\[
0 \leq \theta \leq 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \leq \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)
\]

(as an inequality in \(\mathbb{R} \cup \{\infty\} \)), means the same as the two conditions

- \(\text{dom } f \) is convex
- for \(x, y \in \text{dom } f \),

\[
0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]
First-order condition

f is **differentiable** if $\text{dom } f$ is open and the gradient

$$
\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n} \right)
$$

exists at each $x \in \text{dom } f$

1st-order condition: differentiable f with convex domain is convex iff

$$
f(y) \geq f(x) + \nabla f(x)^T(y - x) \quad \text{for all } x, y \in \text{dom } f
$$

first-order approximation of f is global underestimator
Second-order conditions

f is **twice differentiable** if $\text{dom } f$ is open and the Hessian $\nabla^2 f(x) \in S^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \ldots, n,$$

exists at each $x \in \text{dom } f$

2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

 $$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \text{dom } f$$

- if $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom } f$, then f is strictly convex
Examples

quadratic function: \(f(x) = (1/2)x^T Px + q^T x + r \) (with \(P \in \mathbb{S}^n \))

\[
\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P
\]

convex if \(P \succeq 0 \)

least-squares objective: \(f(x) = \|Ax - b\|_2^2 \)

\[
\nabla f(x) = 2A^T(Ax - b), \quad \nabla^2 f(x) = 2A^TA
\]

convex (for any \(A \))

quadratic-over-linear: \(f(x, y) = x^2/y \)

\[
\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0
\]

convex for \(y > 0 \)
log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{1^T z} \text{diag}(z) - \frac{1}{(1^T z)^2} zz^T \quad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v:

$$v^T \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2)(\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \geq 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwarz inequality)

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbb{R}_{++}^n is concave

(similar proof as for log-sum-exp)
Epigraph and sublevel set

α-sublevel set of $f : \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ x \in \text{dom } f | f(x) \leq \alpha \}$$

sublevel sets of convex functions are convex (converse is false)

epigraph of $f : \mathbb{R}^n \to \mathbb{R}$:

$$\text{epi } f = \{(x, t) \in \mathbb{R}^{n+1} | x \in \text{dom } f, f(x) \leq t \}$$

f is convex if and only if $\text{epi } f$ is a convex set
Jensen’s inequality

basic inequality: if f is convex, then for $0 \leq \theta \leq 1$,

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbb{E}z) \leq \mathbb{E} f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\text{prob}(z = x) = \theta, \quad \text{prob}(z = y) = 1 - \theta$$
Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$

3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective
Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: $f(Ax + b)$ is convex if f is convex

examples

- log barrier for linear inequalities

\[f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{ x \mid a_i^T x < b_i, i = 1, \ldots, m \} \]

- (any) norm of affine function: $f(x) = \|Ax + b\|$
Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

• piecewise-linear function: $f(x) = \max_{i=1,\ldots,m}(a_i^T x + b_i)$ is convex

• sum of r largest components of $x \in \mathbb{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}$$

is convex ($x_{[i]}$ is ith largest component of x)

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \cdots + x_{i_r} \mid 1 \leq i_1 < i_2 < \cdots < i_r \leq n\}$$
Pointwise supremum

If $f(x, y)$ is convex in x for each $y \in A$, then

$$g(x) = \sup_{y \in A} f(x, y)$$

is convex

Examples

- Support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- Distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

- Maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\text{max}}(X) = \sup_{\|y\|_2 = 1} y^T X y$$
Composition with scalar functions

composition of $g : \mathbb{R}^n \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x))$$

f is convex if g convex, h convex, \tilde{h} nondecreasing

• proof (for $n = 1$, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension \tilde{h}

examples

• $\exp g(x)$ is convex if g is convex

• $1/g(x)$ is convex if g is concave and positive
Vector composition

composition of \(g : \mathbb{R}^n \rightarrow \mathbb{R}^k \) and \(h : \mathbb{R}^k \rightarrow \mathbb{R} \):

\[
f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x))
\]

\(f \) is convex if \(g_i \) convex, \(h \) convex, \(\tilde{h} \) nondecreasing in each argument

\(g_i \) concave, \(h \) convex, \(\tilde{h} \) nonincreasing in each argument

proof (for \(n = 1 \), differentiable \(g, h \))

\[
f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)
\]

examples

- \(\sum_{i=1}^{m} \log g_i(x) \) is concave if \(g_i \) are concave and positive

- \(\log \sum_{i=1}^{m} \exp g_i(x) \) is convex if \(g_i \) are convex
Minimization

if \(f(x, y) \) is convex in \((x, y)\) and \(C\) is a convex set, then

\[
g(x) = \inf_{y \in C} f(x, y)
\]

is convex

examples
• \(f(x, y) = x^T A x + 2x^T B y + y^T C y \) with

\[
\begin{bmatrix}
A & B \\
B^T & C
\end{bmatrix} \succeq 0, \quad C \succ 0
\]

minimizing over \(y \) gives \(g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T)x \)

\(g \) is convex, hence Schur complement \(A - BC^{-1}B^T \succeq 0 \)

• distance to a set: \(\text{dist}(x, S) = \inf_{y \in S} \|x - y\| \) is convex if \(S \) is convex
the **perspective** of a function \(f : \mathbb{R}^n \to \mathbb{R} \) is the function \(g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R} \),

\[
g(x, t) = tf(x/t), \quad \text{dom } g = \{(x, t) \mid x/t \in \text{dom } f, \ t > 0\}
\]

\(g \) is convex if \(f \) is convex

examples

- \(f(x) = x^T x \) is convex; hence \(g(x, t) = x^T x/t \) is convex for \(t > 0 \)

- negative logarithm \(f(x) = -\log x \) is convex; hence relative entropy \(g(x, t) = t \log t - t \log x \) is convex on \(\mathbb{R}^2_+ \)

- if \(f \) is convex, then

\[
g(x) = (c^T x + d) f \left((Ax + b)/(c^T x + d)\right)
\]

is convex on \(\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \text{dom } f\} \)
The conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

- f^* is convex (even if f is not)
- will be useful in chapter 5
examples

• negative logarithm \(f(x) = -\log x \)

\[
f^*(y) = \sup_{x > 0} (xy + \log x)
\]

\[
= \begin{cases}
-1 - \log(-y) & y < 0 \\
\infty & \text{otherwise}
\end{cases}
\]

• strictly convex quadratic \(f(x) = (1/2)x^T Q x \) with \(Q \in S_{++}^n \)

\[
f^*(y) = \sup_x (y^T x - (1/2)x^T Q x)
\]

\[
= \frac{1}{2} y^T Q^{-1} y
\]
Quasiconvex functions

$f : \mathbb{R}^n \rightarrow \mathbb{R}$ is quasiconvex if $\text{dom } f$ is convex and the sublevel sets

$$S_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave
Examples

• $\sqrt{|x|}$ is quasiconvex on \mathbb{R}
• $\text{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \geq x\}$ is quasilinear
• $\log x$ is quasilinear on \mathbb{R}_{++}
• $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbb{R}_{++}^2
• linear-fractional function

 $$f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{x \mid c^T x + d > 0\}$$

 is quasilinear

• distance ratio

 $$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom } f = \{x \mid \|x - a\|_2 \leq \|x - b\|_2\}$$

 is quasiconvex
internal rate of return

• cash flow $x = (x_0, \ldots, x_n)$; x_i is payment in period i (to us if $x_i > 0$)
• we assume $x_0 < 0$ and $x_0 + x_1 + \cdots + x_n > 0$
• present value of cash flow x, for interest rate r:

$$PV(x, r) = \sum_{i=0}^{n} (1 + r)^{-i} x_i$$

• internal rate of return is smallest interest rate for which $PV(x, r) = 0$:

$$\text{IRR}(x) = \inf \{ r \geq 0 \mid PV(x, r) = 0 \}$$

IRR is quasiconcave: superlevel set is intersection of open halfspaces

$$\text{IRR}(x) \geq R \iff \sum_{i=0}^{n} (1 + r)^{-i} x_i > 0 \text{ for } 0 \leq r < R$$

Convex functions 3–25
modified Jensen inequality: for quasiconvex f
\[0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \max\{f(x), f(y)\} \]

first-order condition: differentiable f with cvx domain is quasiconvex iff
\[f(y) \leq f(x) \implies \nabla f(x)^T(y - x) \leq 0 \]

sums of quasiconvex functions are not necessarily quasiconvex
Log-concave and log-convex functions

A positive function \(f \) is log-concave if \(\log f \) is concave:

\[
f(\theta x + (1 - \theta)y) \geq f(x)^\theta f(y)^{1-\theta} \quad \text{for } 0 \leq \theta \leq 1
\]

\(f \) is log-convex if \(\log f \) is convex

- Powers: \(x^a \) on \(\mathbb{R}_{++} \) is log-convex for \(a \leq 0 \), log-concave for \(a \geq 0 \)
- Many common probability densities are log-concave, e.g., normal:

\[
f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}
\]

- Cumulative Gaussian distribution function \(\Phi \) is log-concave

\[
\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du
\]
Properties of log-concave functions

• twice differentiable f with convex domain is log-concave if and only if

$$f(x) \nabla^2 f(x) \preceq \nabla f(x) \nabla f(x)^T$$

for all $x \in \text{dom } f$

• product of log-concave functions is log-concave

• sum of log-concave functions is not always log-concave

• integration: if $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is log-concave, then

$$g(x) = \int f(x, y) \, dy$$

is log-concave (not easy to show)
consequences of integration property

• convolution $f * g$ of log-concave functions f, g is log-concave

$$(f * g)(x) = \int f(x - y)g(y)dy$$

• if $C \subseteq \mathbb{R}^n$ convex and y is a random variable with log-concave pdf then

$$f(x) = \text{prob}(x + y \in C)$$

is log-concave

proof: write $f(x)$ as integral of product of log-concave functions

$$f(x) = \int g(x + y)p(y) dy, \quad g(u) = \begin{cases} 1 & u \in C \\ 0 & u \not\in C \end{cases}, \quad p \text{ is pdf of } y$$
example: yield function

\[Y(x) = \text{prob}(x + w \in S) \]

- \(x \in \mathbb{R}^n \): nominal parameter values for product
- \(w \in \mathbb{R}^n \): random variations of parameters in manufactured product
- \(S \): set of acceptable values

if \(S \) is convex and \(w \) has a log-concave pdf, then

- \(Y \) is log-concave
- yield regions \(\{ x \mid Y(x) \geq \alpha \} \) are convex
Convexity with respect to generalized inequalities

\(f : \mathbb{R}^n \to \mathbb{R}^m \) is \(K \)-convex if \(\text{dom} \ f \) is convex and

\[
 f(\theta x + (1 - \theta)y) \preceq_K \theta f(x) + (1 - \theta)f(y)
\]

for \(x, y \in \text{dom} \ f, \ 0 \leq \theta \leq 1 \)

example \(f : \mathbb{S}^m \to \mathbb{S}^m, \ f(X) = X^2 \) is \(\mathbb{S}^m_+ \)-convex

proof: for fixed \(z \in \mathbb{R}^m, \ z^TX^2z = \|Xz\|^2_2 \) is convex in \(X \), i.e.,

\[
 z^T(\theta X + (1 - \theta)Y)^2z \leq \theta z^TX^2z + (1 - \theta)z^TY^2z
\]

for \(X, Y \in \mathbb{S}^m, \ 0 \leq \theta \leq 1 \)

therefore \((\theta X + (1 - \theta)Y)^2 \leq \theta X^2 + (1 - \theta)Y^2 \)